
Programmable Controllers
SlMATlC S5-010W and K

Programming Instructions

-

Siemens Aktiengesellschaft Subject to change without prior notice Order NO.: GWA 4NEB 807 1071 -02
Printed in the Federal Republic of Germany
AG 9830.3 FI 36 en

SIEMENS

SlMATlC S5-010W and K
Programmable Controllers
Programming Instructions Order NO. GWA~NEB 807 1071 -02

Contents

1. Introduction
1.1 Construction
1.2 Address~ng
1 3 Mode of operation

2. Programming units
3. Programming
3.1 STEP 5 programming language
3 2 Basic concepts
3.3 Descrlpt~on of operations
4. Programming notes
4.1 Timer functions and Interrupt processing
4 2 Retentive flags and design recommendations

5. Programming examples
5 1 Binary logic
5.2 Settingiresetting functions
5.3 Timer functions

5 4 Complex functions
6. Forms

Page

2 to 5
2 and 3
4
5
6 and 7
8 t o 12
8 and 9
10

I 1 and l 2
13 and 14
13
14
15 to32

15 to20
21 to 23
24 to 26
27 to 32

33 to 37

1. Introduction

1.1 Construction

S5-OlOW, Module configuration

The CPU, the interface module and the inputltimer modules are can be used instead of the interface module. This permits the follow-
assigned to fixed specific locations. One of the two output modules ing maximum configuration:

With 4 module locations:

Analog timers: 4
Inputs: 40
Outputs: 56

EPROM

$--l
l
4 ---

I
I

PU interface module
L

l

PU interface module

:r_f?/&z;y-y 1

W~th 6 module locat~ons

I Analog t~mers 8
Inputs m 80
Outputs 84

I l l

,86,8*/5 /' 9 J d

W~th 8 module locat~ons

Analog ttmers 12

EPROM 120
112

4--1
l

--- --I
I
I
l

PU interface module L -

1. Introduction

1 .l Construction

SWlOK, Module configuration
It should be n,oted that, for example, a maximum configuration with

The CPU and the inputltimer modules are assigned to specific fixed relay modules restricts the possible number of inputs and solid-state
locations. The modules can be plugged into the other locations as outputs.
required. If an operator's panel is connected, the maximum configuration can
The following maximum configuration is thus possible: be reduced (cf. Address decoding).

t t t t t I '

PC with 5 module locations

Analog timers: 4
Inputs: 40
Outputs: 48 solid-state

72 relays
(without operator's panel)

PC with 8 module locations

Analog timers: 8
Inputs: 80
Outputs: 80 solid-state

96 relays
(without operator's panel)

Operator's panel

Digital timers: 15
Inputs: 32 pushbuttons
Outputs: 32 fault messages on

7-segment display
Additional
display: 24 LEDs

(24 V signals)

1. Introduction

1.2 Addressing

S5-010W
Peripheral I10 module addressing range (jumper-selectable)

2 2 Aoutput 0.8Aoutput

S5-010K
Peripheral I10 module addressing range (jumper-selectable)

1. Introduction

1.3 Mode of operation

The desired control functions of the S5-010-programmable controller
are determined by the program consisting of a number of individual
STEP 5 statements.

Pruwamming A 1 7 1
unit A 1 5 3

S Q l O

W

I

The program statements are written consecutively into the locations
of the memory from a programming unit.

During operation, the processor scans the memory cyclically, select-
ing the memory addresses one after the other. The statement read
out of the meinory location is interpreted and the corresponding
operation executed.

When the end of the program is reached, i.e. the BE operation in the
last memory location has been executed, the processor starts again
from the beginning of the program.

Example of how statements are processed:

CPU
Memory

The statement AI 5.3 causes the signal status of terminal 3 of the
input module in location 5 to be scanned. The result of this scanning
operation is then ANDed with the result of the previously executed
statement.

The result of this logical operation is temporarily stored and when an
output statement, in this case SQ1.O, occurs, is made available at
terminal " 0 of the output module in location "1" as an output
command.

The time required for one program run is referred to as the cycle time,
and is determined by the number of statements and the time required
for processing one statement. The controller of the S5-010W pro-

Addresses I grammable controller requires 20 ps for processing one statement
and the S5-010K 12 us.

Selection
of memory addresses

For a program contsining 1K (1024) statements, the cycle time is
amrox. 20 ms in the case of the S5-010W PC and 12 ms in the case . .
of the S5-010K PC, ignoring the propagation delays at the inputs.
The response time can be shortened if necessary by means of inter-
rupt processing. As soon as the signal state at one of the inputs
changes, a group signal is sent to the CPU. The interrupt signal is
evaluated with the AF 0.0 statement. Program processing is inter-
rupted and recommences from the beginning of the program (ad-
dress "0). By programming the AF 0.0 statement several times
within the program the responsetimecan beshortened considerably.

Bus

Bus

Enpuf modules

Cyclic Interrupt-driven processing
program processing

2. Programming units

possible
0 possible with optional unit

Function

On-line operation
(with connection to the programmable controller)

Off-line operation
(no connection to the programmable controller)

Representation as control system flowchart

Representation as ladder diagram

Representation as statement list

Programming with symbolic addresses

Programming with comments
(1 line of comment with max. 32 characters
per network or segment)

Program stored in RAM with battery backup

Insertionldeletion of statements

Scanning of signal state

Production of program libraries

Programming EPROMs

Erasing EPROMs

Statement list printout

Control system flowchart printout

Ladder diagram printout

Assignment list printout

Cross-reference list printout

Program overview printout

2. Programming units

Program input Function keys and
numeric keys

Programming the
programmable controllers

Program output

S5-010 and
S5-110A PCs

Display panel
Hexadecimal

Documentation

Programming off-line

Link to PC I W

Data medium EPROM

Special features EPROM
erasing facility

Aids for system start-up
and maintenance 1

S5-010 and
S5-110A and
S5-130A. 130K PCs

Function keys and
numeric keys

Display panel
Statement list or
ladder diagram;
absolute parameters

PT80llTY printer

off-line
on-line

parallel (3 m)

EPROM

EPROM
erasing facility,
printer connection

Displays:
Signal state
RL.0 (binary)

Forc~n~:''
Outputs and flags

Function keys and
numeric keys

S5-010 and
S5-110A and
S5-130Aand 130K PCs

Screen
Statement list or
ladder diagram;
absolute parameters

P T 8 O m printer l

S5-0 10
S5-11 OA to
S5-150K PCs

off-line
on-line I

S5410
S5-110A to
55-1 50K PCs

parallel (3 m) l
EPROM

No EPROM erasing
facility, printer connectio

/ Disalavs: / Displavs: I Generation of cross-

Function keys and
alphanumenc keys

Screen
Statement list,
ladder diagram or
control system flow-
chart; absolute or
symbolic parameters

P T 8 0 m printer

off-line
on-line

parallel (3 m) for S5410
S5-1 lOA, 13OA, 130K, PCS
serial (up to 1000 m) for
S5-130W, 150A, 1%. PCS

EPROM
Mini-floppy-disk

EPROM erasing facility,
printer connection
2 mini-floppy-disk drives

l

Sig&l state, Sigrial state, reference lists,
RLO (binary and digital) RLO (binary and digital Assi nment lists (sorted),

Forcina:" Forcina:') ~ l o c f documentation,

Function keys and
alphanumeric keys
Punched cards via 670 PU

Screen
Statement list or
control system flow-
chart; absolute or
symbolic parameters

Line printer

off-line

Cartridge
Floppy disk

(4 floppy disk drives)
Line printer,
(connection for MODEM)
Connection for 670 PU

/ Outputs and flags I Outputs and flags / Programm structure
l Generation of cross- 1 Generation of cross- l I reference lists / reference lists I

l) Not for the SlMATlC S5-110A and 55-010 programmable controllers.

3. Programming

3.1 STEP 5 programming language

STEP 5 programming language

TheSTEP5 programming language is an integral part of the SlMATlC
S5 programmable controller system.

The operation set of this programming language makes it possible to
program automation schemes, ranging from simple binary logic to
complex digital processing.

The program can be written in three different methods of represen-
tation:
- Ladder diagram (LAD) withcontact sytnbolssimilarto a schematic

circuit diagram
- Statement list (STL) with mnemonic abbreviations
- Control system flowchart (CSF) with function symbols.

The three methods of representation correspond to the DIN draft
19239. The operation set for the SlMATlC S5-010 programmable
controller is a subset of the total STEP 5 operation set.

The program of a PC consists of a number of individual statements.
The basic component of the statement is the operation, which speci-
fies the function the controller has to perform. In this connection, a
distinction is made between the following:

Binary logic operations

The signal statuses of inputs, outputs and flags are scanned. The
result of the scan is ANDed or ORed with the result of a preceding
logic operation. The new result is then stored.

Memory operations

These are executed as a function of the result of previous scanning
operations, and include operations with which outputs or flags can
be set or reset.

Organisational operations

These serve to influence program execution.

r A d d r e s s 7 r - Statement --7

Program memory operation
address: Mnemonic of the
lndicates the mern- operation. In this
ory location in case A = AND
which the state-
ment is stored
(required only
when program-
ming with the 610 PU).

operand Parameter
identifier Defines module
lndicates whether location and
an input, output or terminal. In
flag is involved. this case
In this case location No. 5,
I = input terminal 1.

Operand

3. Programming

3.1 STEP 5 Programming language

L . ' 1

STEP 5 programming methods

The STEP5 programming language is used forwriting user programs
for oroarammable controllers of the SlMATlC S5 system. The , .,
program can be represented either as a statement list (STL), control
system flowchart (CSF), or ladder diagram (LAD).

The statement list (STL) describes the automation task by means
of mnemonic function designations.

The control system flowchart (CSF) is a graphic representation of
the automation task, using symbols to DIN 40 700lDIN 40 719.

The ladder diagram (LAD) uses graphic circuit diagram symbols
(American representation) to represent the automation task.

The types of representation are in keeping with DIN 19 239 (draft).

The type of representation to be used for programming depends
on the relevant programming unit and the type of representation
selected for that particular programming unit.

The programming unit converts the control system flowchart or
ladder diagram into a statement list. In the memory of the pro-
grammable controller, the program is stored in MC 5 machine code.

Breakdown of a STEP 5 statement

rameter I

The statement is the smallest STEP 5 program component. It
comprises the following:

- Operation, i.e. "What is do be done?" and
- the operand, i.e. "What is it to be done with?"

The operand comprises the following:

- Operand identifier (input, output etc.) and
- parameter.

The parameter identifiers the number of the inputloutput etc. ad-
dressedby the statement.

In the case of the 670 programming unit, the operand may include
an absolute parameter, e.g. 1 5.1, or a symbolic parameter, e.g.
I "LS1". Programming is considerably simplified in the latter case,
as the actual plant designation is directly used to describe the device
connected to the input or output.

A statement takes up one word (2 bytes) in the program memory.

3. Programming

3.2 Basic concepts

Linear programming

The individual statements of the user program of the S5-010 pro-
grammable controller are processed linearly in the order in which
they are stored in the memory.

Interrupt-driven program processing is possible by means of an
interrupt (with group signal) if a short reaction time with fine toler-
ances is to be achieved in response to an interrupt. For this purpose,
the group interrupt flag 0.0 (AF 0.0) must be scanned several times
in the program. If this flag is set, linear program processing is inter-
rupted and program processing recommences from the beginning.
For this reason, the parts of the program which must be processed
quickly in response to an interrupt must be at the beginning of the
program.

Structure and processing of a linear user program

Programming methods

Off-line plrwwmming

Off-line programming

Ow1-tme pro~f~lmming

Off-line programming -- -

There is no connection between the programming unit and the PC.

In the case of the 610 programming unit, the statements keyed into
the programming unit are written directly into the EPROM memory
submodule, which is plugged into the programming unit.

In thecaseofthe630,631 and670programmingunits, thestatements
entered are first written into the RAM contained in the programming
unit. The contents of this memory are then transferred to the EPROM
submodule plugged into the programming unit.

On-line programming (not with the610 programming unit)

The programming unit is hooked up to the PC through the 500 pro-
gramming unit interface module.

The statements entered into the programming unit are stored initially
in the RAM incorporated in the programming unit. This program is
then processed by the PC, which is connected via the programming
unit interface module. The functions of the PC can thus be tested
and, if necessary, changed. Furthermore, on-line programming
permits the display of signal states and the results of logical opera-
tions.

In order to transfer the program to the 910 EPROM submodule, the
latter is plugged into the relevant receptacle on the programming
unit and the contents of the programming unit memory (RAM) trans-
ferred to the 910 memory submodule. In this way, programs can
easily be duplicated.

On-line programming

3. Programming

3.3 Description of operations

- - - -
P - - -- - - - -- -- l ope;.Yo; r L e t e r rangep Program as

w~th programming unlt 1 flowha, Ladder Statement

610 1 630,670,690 1 d~agram l~st

AND Scan for "1" s~gnal status
l

logic A 1 1 0

of an output

Scan for "0" signal status
.p---. . . . - -~

of an input

- -- - - - - -- - - - - . . - - . ..---p pp P-

- - - - - .. . - P

A I 1.0

pears if the condition

--- - ~ - ~ -. .

3. Programming

3.3 Description of operations

- - - - - - - - - p -

Operat~on Parameter range w~th Remarks
programmlng unit 1 I6l0 1 630.63 1,670

Organisational No operation
operations

No operation

NOPO

Block end

-

Conditional end BEC -
of block

Note:

The 670 PU inserts screen statements into the user program.
This has the following effect:

No operations are carried out.
This operation is used to overwrite the
contents of a memory location.

No operations are carried out.
This operation is used to keep a memory
location free for patching or expanding
programs.

End of program
lump to beginning of program.

End of program, depending on the result of the
logic operation.
If result is "l", jump to beginning of program;
if "0", no effect, but RLO set to "1".

The maximum number of statements (depending on the memory
submodule used) is reduced approximately by the number of rungs
programmed.
Programs in 4K EPROMS loaded by other PUS can only be read out
by the 670 PU if free space is available for the rungs programmed
(i.e. 4K statements minus the number of rungs programmed).

4. Programming notes

4.1 Timer functions and interrupt processing

Timer functions

There are no timer processing operations in the operation set of the
S5-010 programmable controller. Atimer module is therefore started
with output operations and scanned with input operations.

Starting a timer:

SQ If the result of the logic operation (RLO) is "l", the
timer is started.
Before the timer function can be started again, the
timer must be reset with RQ.

If the result of the logic operation (RLO) is "l", the
timer is started.
Before the timer function can be started again, the
operation =Q must be processed at least once with
RLO = "0".

Scanning a timer:

A I , O I Scan results in "1" if the timer is running

AN I, O N I Scan results in "l" if the timer is not running or has
already run.

Scanning the signal state at the input of a timer:

A Q, OQ Scan: timer started (output flag set)

AN Q, O N Q Scan: timer reset or not started
(output flag not set)

Example:
A Q
AN I

Meaning: Timer has been started and has run down

With the timer module, the time is set roughly by slid~ng switches on
the frontplate of the module and is finely adjusted with a potentio-
meter, also on the frontplate. Fine setting is also possible by means
of an external potentiometer (not for the S5-010K). If the CPU is in
stop status, the timers can be activated and set with the "TEST"
switch (very short times via the outputs X5. .X8, trigger signal X9).

For the programming of onloff delays, clock generators and times,
see the programming examples

Interrupt processing

Group
signal

Input module with group signal inputs

A STEP 5 statement is processed by the S5-010W programmable
controller in 20 PS. If the program is 1K statements long, therefore,
the cycle time is 20 ms. With an input delay of 6 ms, this results in a
maximum response time of 26 ms, which is more than adequate for
the normal applications of this controller. If this response time is too
long, it can be considerably shortened by using an input module with
group signal inputs. The S5-010K's cycle time for 1K statements is
only 12 ms. The response time for a program of this length is 18 ms.
Response times can be shortened in this case, too, by means of
interrupt inputs.
As soon as the signal state at one of these inputs changes from "0"
to "1" (or from "l" to "O"), the module sends a group signal OR) to
the CPU and sets the group signal flip-flop. This flip-flop is scanned
with the AF 0.0 statement. If it is "l", cyclic processing is interrupted,
recontinued at the beginning of the program and the group signal
flip-flop is automatically reset. If the interrupt is to be processed
immediately, the interrupt service routines must be located at the
beginning of the program. In this case, the interrupt inputs are
scanned and the corresponding response initiated.

Response time

The response time can be shortened by repeatedly scanning the
group signal flip-flop with the AF 0.0 statement during the entire
program sequence. The shorter the interval between the individual
scans, the shorter the response time.
If the AF 0.0 statement is programmed in every hundredth memory
location, the resulting maximum response time is 8 ms (100 state-
ments X 20 vs + input delay of 6 ms). The response time is kept
constant by inserting the AF 0.0 statement in the program at regular
intervals.

4. Programming instructions

4.2 Retentive flags and design recommendations

Retentive flags (relay equivalents) (S5-010W only)

The current state of a program sequence is stored in the CPU in the
form of flags and output flags (RAM).
For a cold restart the switch on the CPU must be set to "NR". All
flags referenced in the program with set statements are loaded with
"0".
If this switch is set to " R , the last state of all retentive flags used is
stored if the program is interrupted (power failure, moving mode
switch from RUN to STOP to RUN) and the flags are unaffected on
restart. All non-retentive flags and output flags used are reset.
Note: - Since, in the event of a power failure, the input signals

usually disappear before the CPU is switched off, the flag
image can be distorted. It is helpful to avoid signals which are
active low (Awl, ONI). The flag locations which are to be
retentive may only be addressed with the SF and RF state-
ments.

If the "STOP" LED lights up on power recovery, the backup battery
voltage is too low and the states of the retentive flags have not been
stored. By moving the mode switch from RUN to STOP and back to
RUN, the controller is ready for operation (cold restart).

Design recommendations
Task descri~tion

l
Configure
control system

l
Determine
hardware requirements

Write program

W System start-up

Task definition

Determine the tasks to be handled by the PC
Compile a ladder diagram or statement list
Compile a list of sensors and actuators

The backup battery must be replaced
Hardware requirements

Select modules

Inputltimer modules
Number depends on number of sensors

Output modules
Number depends on number of actuators

Select the size of the memory submodule: estimate length of pro-
gram; allow approx. 15 memory locations per input and output.

Program

Compile a statement list (STL) or ladder diagram (LAD) for pro-
gramming with the 610,630,631 or 670 programming unit.
The preprinted forms for statement lists (STL), ladder diagrams (LAD)
or control system flowcharts (CSF) appended to these programming
instructionsareavaluableaid and can becopied(DINA4). Preprinted
forms in DIN A3 format are available with the following Order Nos.:
Statement list Paper (3) E 88310-V244-L92
Ladder diagram Foil S 6360
Ladder diagram Paper S 6361
Control system flowchart Foil S 6362
Control system flowchart Paper S 6363
It is advisable to arrange and list the inputs, outputs and flags de-
fined in the program, using one of the appended forms (which may
also be copied).

5. Programming examples

5.1 Binary logic

The programming examples can be run through
for checking with all controllers provided they have
a CPU, an inputltimer module (coding jumpers not
inserted) and an output module (coding jumpers
not inserted).

Binary logic

AND logic

Original STEP 5 reoresentation

Statement Ladder diagram Control system flowchart
list STL 1 LAD I CSF

A "1" signal appears at output (32.0 when all the inputs have "1" E INPUT
signals simultaneously. A A OUTPUT
A " 0 signal appears at output Q2.0 if at least one of the inputs has
"0" signal.
The number and the sequence of the scans are irrelevant.

5. Programming examples

5.1 Binary logic

Binary logic (continued)

OR logic

Original 1 STEP 5 representation

e n t Ladder diagram
LAD

Control system flowchart 1 CSF

A "1" signal appears at output (22.0 if at least one of the inputs has a E a INPUT
"1" signal. A a OUTPUT
A"0" signal appears at ouput (22.0 if all the inputs have "0" signals
simultaneously.
The number and the sequence of the scans are irrelevant.

Scanning for " 0 signal status

Original 1 STEP 5 representation

Statement Ladder diagram
list STL I LAD

Control system flowchart 1 CSF
- - -- - - - - - - - - - - - -

.A "1" signal appears at output (32.0 only when input 11.5 has "1" E a INPUT
signal (NO contact operated) and input 11.6 has "0" signal (NC A a OUTPUT
contact not operated).

5. Programming examples

5.1 Binary logic

Binary logic (continued)

AND-before-OR logic

Original / STEP 5 representation

I Statement Ladder diagram
list STL 1 LAD

Control system flowchart 1 CSF

A "1" signal appears at output (22.0 when either the output of the E 2 INPUT
AND gate is "1" oroneof the inputs of the OR gate has a "1" signal. A e OUTPUT
The AND logic must be programmed before the OR logic.

AND-before-OR gate

Orlglnal I STEP 5 representation

Statement Ladder d~agram Control system flowchart 1 LAD 1 CSF
L-- - - - - - - -

..---
A I 1.0 F l E l . ,

M 1 1 E 1." --- l &

A I 1.1 + I 1 + - I r - - + - - - - - - -+ -~- i) - - I
E I . , - - - 0 8 - - n 1.0

I I

= F 1.0 1 I ! ---

A" l " signal appears at output Q2.0 when the output of the least one E 2 INPUT
of the AND gates is "1". A a OUTPUT
All AND logic operations, except the last one, must be buffered. M a FLAG

5. Programming examples

5.1 Binary logic

Binary logic (continued)

OR-before-AND logic

Original 1 STEP 5 representation

list STL
Control system flowchart 1 CSF

Flags must always be set in connection with OR-before-AND operations!

E e INPUT
A 2 OUTPUT
M A FLAG

OR-before-AND logic

1 STEP 5 representation

Statement Ladder diagram 1 list STL 1 LAD
1 Control system flowchart
1 CSF

E e INPUT
A OUTPUT
M 2 FLAG

5. Programming examples

5.1 Binary logic

Binary logic (continued)

NAND logic

-. .-..----p-- -.. ~ . - -.

Original 1 STEP 5 representation

Statement ' Ladder diagram
list STL LAD

Control system flowchart 1 CSF

A "0" signal only appears at output 02.0 i
signal.

f all inputs have a "1" E 2 INPUT
A OUTPUT
M 2 FLAG

NOR logic

Original
1
/ STEP 5 representation

Control system flowchart
CSF

Statement
list STL

Ladder diagram
LAD

A"0" signal appears at output Q2.0 as soon as at least one input has
a "l" signal.

a INPUT
, a OUTPUT
I a FLAG

5. Programming examples

5.1 Binary logic

Binary logic (continued)

Exclusive OR logic

Original / STEP 5 representation

Statement
list STL

Ladder diagram
LAD

Control system flowchart
CSF

Output Q2.0 has a "1" signal if both inputs have different signals. E 2 INPUT
A 2 OUTPUT
M e FLAG

Exclusive NOR logic

-... .-.- ----p- ~ ~ ~ ~ ~ ~ ~ ~ p ~ ~ p

Original

Control system flowchart
CSF

p---p----pp-p---p-

Output (22.0 has a "1" signal if both inputs have the same signals. E e INPUT
A A OUTPUT
M 2 FLAG

5. Programming examples

5.2 Settinglresetting functions

Settinglresetting functions

RS flip-flop for stored signal output

Original STEP 5 representation

Statement Ladder diagram
list STL LAD

Control system flowchart
CSF

The flip-flop is set when a "1" signal is applied to input 11.0. If the The last program scanning operation (in this case A 11 . l) is effective
signal at input 11.0 changes to "O", the status remains unchanged, during the processing of the remaining program if a set signal (input
i.e. the signal is stored. 11 .O) and a reset signal (input 11.1) are simultaneously applied.
The flip-flop is reset when a "1" signal is applied to input 11.1. Setting and resetting have no effect on outputs in programs which
If the signal at input 11.1 changes to "0", this status is still retained. are up to 20 statements long (peripheral delay). With longer pro-

grams, the output isclocked in accordance with the settinglresetting
time relationship.
A prerequisite for correct execution with simultaneous setting
and resetting conditions is a program at least 100 statements
in length.

E a INPUT
A & OUTPUT
M a FLAG

RS flip-flop with flags

Original 1 STEP 5 representation

Statement / Ladder diagram
list STL / LAD

Control system flowchart

- - - - - -- - - -. --

The flip-flop is set when a "1" signal is applied to input 11 .O. If the
signal at input 11.0 changes to "O", the status remains unchanged,
i.e. the signal is stored.
The flip-flop is reset when a "1" signal is applied to reset input 11 . l .
If the signal at input 11 . l changes to "0", this status is retained. If a
set signal (input 11 .O) and a reset signal (input 11.1) are applied simul-
taneously, the reset signal dominates.

E 2 INPUT
A 2 OUTPUT

5. Programming examples

5.2 Settingfresetting functions

Settinglresetting functions (continued)

Pulse edge evaluation 5

Original l STEP 5 representation

Statement 1 diagram
list STL

Control system flowchart
CSF

If input 1 l .0 has a " 0 signal, pulse edge flag F2.0 is always reset.
If the input signal changes from "0" to "1 ", flag F3.0 is set once per
cycle. In the next cycle, the conditions for the logic operation A 11 .O,
ANF2.0 are no longer satisfied.

E a INPUT
M e FLAG

Pulse edge evaluation t

STEP 5 representat~on

Statement Ladder dlagram 1 E;;trol
system flowchart

l~s t STL
-- - - - - - - - - -

1 LAD
- p -- p- -p

Processing is analogous to the evaluation of the positive-going
edge.

E INPUT
M FLAG

5. Programming examples

5.2 Settinglresetting functions

Settinglresetting functions (continued)

Binary scaler (with positive-going edge)

Original 1 STEP 5 representation

Statement Ladder diagram 1 list STL 1 LAD
Control system flowchart 1 CSF

i p - i
n 7 . 0
- -~ --.

0' ' IM 3.0 --'S ' , , ... 8 8

E 1.0 a / R Q ! -

If output (22.7 is set after recognition of the pulse edge, pulse flag
F2.0 must be reset at once to prevent immediate resetting of the
output.

E a INPUT
A 2 OUTPUT
M e FLAG

5. Programming examples

5.3 Timer functions

Timer functions

Pulse (contracting and stretching a pulse)

Original / STEP 5 representation C Cb&rol system flowrhan

- -. -- -------.p-----.. p -p--- p pp-p- p---p- --pp---..-

If RLO = 1, the timer is started by set statements. m L E a INPUT
If RLO = 0, it is reset. T- A a OUTPUT
The scanning operations AI and 01 produce "1" signals as long as I T P I T k

Q J
the timer is running.
Returning of the timer output to the input (OR) results in pulse
stretching

"On" delay

Original 1 STEP 5 representation

Statement iadder diagram
list STL 1 LAD

Control system flowchart 1 CSF

The timer is started, and also reset, via input 11.1. n I - 7 E a INPUT
Output Q2.1 is set after the time has elapsed, as long as input 11 .l m m A 2 OUTPUT
still has a "1" signal. -1 T i-

0 2 l n

5. Programming examples

5.3 Timer functions

Timer functions (continued)

"Off" delay

Original STEP 5 representation

Statement Ladder diagram
list STL 1 LAD

Control system flowchart
CSF

In the case of the "off" delay, timer 3.0 only starts when input 1.0 11~0- E B INPUT
changes to "0" (An 11.0 scanning operation). ~ 3 . 0 I.T-l A a OUTPUT
The output is set when input 1.0 has a "I" signal or when T3.0 is

0 2 . 0 ~ M 2 FLAG
running.
If input 1.0 has a "I" signal again before time 3.0 has elapsed, the
timer is reset.
It only starts again (with the full duration) when input 1.0 has a " 0
signal.

1) Start time
2) Scan time

5. Programming examples

5.3 Timer functions

Timer functions (continued)

Clock generator with one timer

Original 1 STEP 5 representation

Statement Ladder diagram 1 list STL 1 LAD
Control system flowchart
CSF

A N F 1.0 ! + - - - (S 1 -l

R Q 3.0 ;a 0 . 1 n 1 . 0
I

+ . l / [- .+. . .I ,[+ .--- l I

A 3.0 I
+ - - - (R I . - - l

1

E 2 INPUT
A 2 OUTPUT
M 2 FLAG

Clock generator with two timers -free running

Original

- P P - P

STEP 5 representatlon

Statement Ladder diagram
list STL / LAD

Control system flowchart
CSF

By setting timers T3.0 and T3.1, the pulse duration and interval be- T R ~ 3 m I-- E A INPUT
tween pulses (marklspace ratio) can be changed as required. To2 U - t --U A OUTPUT

~20-

i
Cold restart of PC

5. Programming examples

5.4 Complex functions

Program
memory

Address

----L- 0

1
-L - L 1

Binary up-counter with pulse edge evaluation

Pulse edge evaluat~on

STEP 5
Statement list

Resetcounter

BltO

Reset pulse flag

B1t1

Reset edge flag

7lt2

Reset edge flag

Blt 3

Reset edge flag

Programmable Controller System

Operat~on

l L

A N
1-1

- - - _-
Page of

1 - 1 2
t L j 3

_-_l--L-l
4

5 - L_i_- l - .

l ,
6

L l

_ I -L -1 8 _.

1 1 ,
9

L

Operand

F , l
F ,
F ,

I l

F L -

L

Q, -
Q L -

Q

= l L-~

A I

_- S ,
A N ,
L

R ,
R

ldent

I L
F , -

! - -LJL7-
1- L - 1 7 - .

1 ALL
,

1 1 . -I - L -A--

I 1 1 . 0

1 1 . 2
2 0

l L A -

l l 2 - 1

-, 12 - 2
-_L -L _ l B

I l I C
- i L L D . ! l -
--L_- L

I
F

_ I L L L?
_ J - _ L l 1

d - A , -
3 -- I - L - L - _

l l l 4

1 l l

I I 16
I I 1

7

- - L - - l 8
i l l

_-,-L__,

1 ,
B

-L I c
-_L -1- I D
- J - L i

E

--li_

2 0 _ _L1 -1

._l -1 - l 1
2 -I- L - L _
3

_ L - l - _I-

- 1 1
4

1 , 1 5

L L

, l l 7
I 1 18

-A-L I 9
A

--L 1 - 1 -

I l

--U --c---,
D - i l - -L-

E

l I F

Parameter

3 l -
1 1 1 . 0

R I L

'lE AKTlENGESELLsCHAFT M ENS

Q ,

SlMATlC S5

L- L 2 -L
I 1 . 7

._ l

2 0
LA--

1 1 2 . 0

- l 7
I L 1 7 -A-_

l 2 . 0
2 0 L _L a_-

1 7
L 2 . 1

--Lp) 2 - 1
7

1 11-7-
L 1-2-L

2 1
-_I i- l__

--'L

R-,,
1

E A , % - L - L
S,--L__-I--
-!!-L

A , I

R ,
A I---.-~

Q

?L L

R I

F ,

Q

F -

[F , -

1-9 L-
Q ,
L

- 3 1

F ,

A L L ' L - - - G J
S 1

A I l

9-.eL_LL
A_.R L l

*,,---l

Q L -

F ,
Q ,
Q ,
F

1- \ 2 - 2
I 1 2 . 2

L---A- 1 . 7
1 7

l i -r--

1 2 _ 2 _
I 1 2 . 2

1 7
l--L -6 _

2 3
LL c

2 3 - 1-L.

1 ,-l * Z-
A- 7

QL~_,, 2 - 3
_ _ 1 -1 2 -I 3

l l _L-

I , .

l l .
-_-- I - - L -L_

1 - L J -

-LA_

1 1 .

R , _I
F

F A , ,
A , L

R I -L__

A , L ..

A N ,
S,_ I

R , ,

A I l

R,-,
1

1 l

I B l

-1

, ,
_I

F ,
Q ,
Q, -
F ,
Q l

__-Q l

F ,
L '

Q ,
-

1

l

1

-L_--

l l I

5. Programming examples

5.4 Complex functions

Binary counter with pulse edge evaluation Structure of a Qbit binary counter,

When using binary scalers with pulse edge evaluation, edge evalua- using binary scalers with pulse edge evaluation
tion needonlybeprogrammedonce.The individual bitsof thecounter

1 I STEP 5 I I

. .
are then This results in an up-counter counting with
the rising edge of the counter input. If, when programming, the
sequence of setting and resetting the output is reversed (resetting
the pulse flag is now synchronous with the resetting of the output),
this results in a down-counter. If counting is to take place on the

The same procedure is used for programming the other bits

Program
memory

Address

I I -L 0
I L . r lAl
l 1

2

l , ,

I I l 3

I L I -

Resetting a counter

trailing edge of the input pulse, evaluation of the trailing signal edge
is necessary. 02 o 02 1 02 2 02 3 - -->-,..,-
Programming a down-counter is as follows for bit 0: Edge evaluetton 8810 8 1 1 8 1 2 81, 3

>

The counter just programmed is to be reset with input 11.2. Then,
after edge evaluation of input 11.2, a scan is made to see whether it
is "1". If this is the case, the outputs of the counter are reset. At the
same time, the puise flag is reset so that counting is not possible as
long as the reset signal is applied. Resetting is thus static.

-f

Set output

l l _-l- i

Binary down-counter

Reset output

Reset pulse flag

Statement list

I I 14 R
1 1 1

F Reset pulse flag

l l 16
7

di I - -

Operation

A , ,
I

R ! L.--

----_
R , L

l l

Reset counter

Reset?

Reset counter

Program
memory

Address

- . l 0
-2-RI-,

I i t 2 %
l l -

Operand

Ident.

F ,

STEP 5
Statement list

Parameter

, l - 7

Operation

A I 1

t

, 3 _ R 1 -- l

B ,
Q ,

l

Operand

I , 2 - 0
0

! L ^ - _ .

Ident.

I ,

Q,

a ,]
Q

F , l 7

-_l- __ i l .

Parameter

, l 2
-2 -A. 0-

I I -- 2L
2 . 2

5. Programming examples

5.4 Complex functions

BCD counter

A BCD counter has the same structure as a binary counter, but with a
BCD correction after every 4 bits.

Structure of a BCD counter with 3 decades

using binary scalers with pulse edge evaluation

Consisting of 4 bits
programmed as for the binary counter

BCD correction

Consisting of 4 bits
i programmed as for the binary counter

BCD correction E-I
Consisting of 4 bits
programmed as for the binary counter

BCD correction means that, on the tenth pulse of each decade, i.e.
when the value "10" has been reached in the decade immediately
before, the value of the previous decade is corrected to "0". At the
same time, the pulse flag is set once more. This functionsasa "carry"
to the next decade.

BCD correction for "ones"

Reset to "0"

1 -

5. Programming examples

5.4 Complex functions

Adder for 2 bits, binary

Total 2nd bit

HA Half-adder
FA Full-adder
C Carry

5. Programming examples

5.4 Complex functions

Sequence control

Start sequence cascade, if there is

no reset and if no step has been set.

Conditions for step 1

SlMATlC S5 Programmable Controller System

5, Rogramming examples

5.4 Complex functions

Sequence control (continued)

In contrast to logic control, only one part of the program at a time (a sequence
step) is enabled for processing in the case of sequence control. Only when the
conditions for this step have been fulfilled does processing continue with the
next step.
The individual steps of a sequence cascade are identified by auxiliary Rags (step
flags). A set step flag means that the step concerned has just issued its control
commands and the conditions for the next step are enabled. If the conditions of

Representation of a sequence cascade
The nature of the output control commands is identified by the SP, NS or DY
prefix in the relevant command box of the sequence cascade.

SP "latching"
The output is to be set and retain the "1" state through several sequence steps
until it is reset. For this reason, "On" (SQ) or " O f f (RQ) must also be specified.

NS "non-latching"
The output is to have the "1" state if the requirements of the sequence step are
fulfilled. It is to resume the " 0 state again when progression is made to the next
sequence step.
This function cannot be programmed with the = Q since, as soon as a sequence
step has been set, the conditions for this step are no longer fulfilled. The output
would only remain set for the duration of one cycle. For this reason, SQ is pro-
grammed and, in the next step, RQ.

DY "dynamic"
The output is only set as a pulse. A timer must be used to generateexternal pulses.
For internal pulses, it is sufficient if the " 1" state exists only for one cycle. For this
reason, = is programmed (see above).
In this example, the sequence cascade is initialised with input 11.0, i.e. all step
flags are reset. Only when all step flags have been reset and input 11.0 is " 0 can
the cascade be enabled with input 11.1. If the conditions for the first step have
been met (11 -3 and 11.5 are "l"), the first step is set. The outputs ((22.3 and Q2.2)
are then set and the next step is enabled.

A sequence step therefore consists of
> scanning the preceding step flag ("enable"),
> the conditions of this step,
> setting the step flag and resetting the preceding step flag

> setting and resetting the outputs to be processed.

SlMATlC S5 Programmable Controller System

6. Forms

Examples of STL, LAD and CSF

6. STL form

6. LAD form

mmc
eau

6. CSF form

L
B i i i 08 C WOE "'id""o'i~""3 S9Cq S

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

