SIEMENS

SIMATIC S5-105R

Programmable Controller

Programming Instructions .

Order No. GWA 4NEB 810 0221-02

Fig. 1 S5-105R-A/B with 605R programmer

Contents:

1. Programming

1.1 Formal rules for structuring
a program

Binary program elements

NO and NC contacts

Outputs (coils) and flags
(internal relay equivalents)
Latching and unlatching

O
. e o
N NN
. e e
W N =

The complex program elements
Timers

Counters

Impulse relay (transition-
sensitive pulse)

.4 Jumps

5 Sequence control systems/
sequence cascades (drum
sequencers)

bt b b
e s o .
wwww
e .
W N =

Program generation with the
105R PC

Program input and correction
Example of program generation

N b

Page
1.1
1.2

Contents:

3. Program test

3.1 Search function

3.2 Signal status display

3.3 Forcing

3.4 Permanent forcing

3.5 Single scan in HOLD mode

4, Storing the program

4,1 Storing the program on
an EEPROM submodule

4.2 Storing the program on

an EPROM submodule
4.3 Duplication of programs

. Operation set
1 Binary operations
.2 Complex operations

O

(=%
(=]

(0]

W N N = b

N Y = Y Wwwwww
. ° . * o e o
[(o)

.
N =

ot ;
. .
D

1. Programming

The 105R programmable controller uses ladder diagrams (LAD) for programming.

The LAD is a graphic method of representing the automation problem using circuit
diagram symbols (American standard). A

¢ 100, 101

! -) 1
P C
so(52(53(1t ! 3k

‘ I

I(D,ZE_i
103 104
]

N Contactor Lamp

L
I

&3
}
Ls

-
¢—————— 9

P
N
Al

Circuit diagram Ladder diagram

The ladder diagram is a symbolic representation of a circuit diagram.
Points with the same potential are described by means of nodes. The ladder dia-
gram is entered directly into the programmer.

1 | 2 | 3 | & | s | 6 | 1 | 8
J1ge e o o o o , .C}.@_S_ ~Room for S
21|09 l-—o—" - ZProgram description T
ZJM—J IR T
_____________ _{
!JB{L.I.I,ﬂf‘._IZ | . | l I-E}M.
BE_.—l'.l.".-l. | L i
b - - - - —
5‘!,. l | I e | | | .
—_— ettt et et et et et s — —— —— —— ——— __{
| I | A A | | |
- = == - =

Fig. 2 Representation of the LAD on a programming form for keying directly in-
to the programmer

1.1

1.1

The program of the 105R PC may consist of
a maximum of 64 program blocks (PBs).
These are assigned numbers from 0 to 63
and can be entered in any order. They are
processed in the 105R PC in the order in
which they are stored in the memory.

Fig. 3

Formal rules for structuring a program

)

PB 5

i

PB 11

i

PB 12

i

PB20

i

PB 60

)

Processing of the PBs

A program block may consist of up to 16 rungs. Each PB can be assigned 15 different

nodes.
A rung may contain 7 contact elements (scans)
8 nodes * _ (vertical interconnections)
1 output element (assignment, always in column 8)
1 | 2 | 3 | & | 5 | 6 7 | 8
] L {

TTT
Ft
]
ok
S+
it
_]; T

Fig. 4 Structural framework of a program block

* Input on programmer: Node ¢ ...
(hexadecimal representation)

14, display on programmer: @ ... E

1.2

When two rungs are linked by means of nodes, it must be remembered that s i gn a 1
flow is only possible from left to right
(diode effect of the contact elements). This must be taken particularly into ac-
count when adding rungs to PBs.

Example: Rung 14 can be added to the given program section, rungs 5 and 6.

N P N N
—|I—°——||——o—i {

| A . e . A)
i e e S e e e

(%)

(=)

:1[,'.2_H_'ls_-_'______'___"__"__"__'_{

—_

By rearranging the rungs, the correct signal flow from left to right
becomes visible.

g— — _.‘L—H_ﬂ““_.._‘ o
g e —o ‘* - | :

WIIIHI'I : : : :‘
6?—-'}—*1—{}—7“'——?—5—*}__71_-"'. :lL' JI[L IJ\
I“:’L'“_%L —:__— _.:._ —.:'.‘— _T;___—_I_ o —_.{l

node 1:

1.3

It is not possible, however, to add the following node 14:

e
619 — F—s2 F—e— b—o2 —— ——— — {——
i bl

After pressing the [SORT|key on the programmer, the program enteredAis checked.

Error message E1 appears, indicating that there are more than 8 program elements
in one rung.

When the block is checked internally, the programmer attempts to maintain the pre-
scribed signal flow from left to right. Rung 6 is therefore shifted to the right
from node 3, as in the previous example, to make possible the insertion of rung 14:

1 | 2 | 3 | & | 5 | 6 [7 |8
L A L L ey By B E
R T
R R R
g - - B e e e e e =

This results in a rung overflow as can be seen from the programming form. This
error is recognised by the programmer and an error message appears.

The rungs are only rearranged internally in the programmer. This rearrangement
is not displayed on the programmer!

1.4

—

1.2 Binary program elements
1.2.1 NO and NC contacts

In contrast to real NO and NC contactors in hard-wired circuits through which a
control current generally flows, the sensor signals are scanned in programmable
controller systems for their signal state O or 1. The switching state of the
program element is obtained by scanning the signal state. This makes it possible
for the opening or closing function to be simulated by the program.

Example

Input LED bright, (2§>
Signal state of input is 'l’
i.e. 10.06 = '1°

Sensor signal —em | —
from an energized NO contact

or from a non-energized NC contact

Input/output module at

location 0
State of the program element if
- scanned for 'l' signal:
0 109
Energized: signal flow +——”‘—‘i BE—
is possible [—
- scanned for '0' signal:
. . 10.0
Not energized: no signal)
flow possible VE

1.5

1.2.2 Outputs (coils) and flags (internal relay equivalents)

Signal states can be assigned to outputs and flags by the program. They can be

scanned like contacts, e.qg.
The signal states of the outputs

Example

Output LED bright
Signal state of output is 'l'

i.e. Q0.0 =

If there is
output Q@.7

If there is
the negated

If there is
the negated

I1I

signal flow via 10.0,
is '1'

signal flow via 10.0,
output Q@.7 is 'O’

no signal flow via 10.8,
output Q@.7 is '1°

J8 00.6, IF
are transferred to the output modules

F3.5.

Relay is
energized

T o

Input/output module
at location O

=
To

100

o
S
=2

o

Ir—*—:
[]
]
a2

o
S
[

100
F’H r
C

ans

1.6

1.2.3 Latching and unlatching

Outputs and flags can be 'latched' and 'unlatched', i.e. the signal state assigned
to them is latched until an inverse state 1is assigned.

Example
Contactor with latching circuit ON T 1
K1

' 10.0 \l \

When sensor If.@ is actuated,

Qf.7 is set to ‘1’ and latched. IafF

It can be unlatched by actuating

sensor I10.1. K1 Q07

Contact K1 is not required due to -

the latching feature.
0 ‘IM Qo7
o— [(L}F—e
g 101 Qa7
— /[—(U }—e

Scanning non-existent * inputs always results in '0' signal.

Non-existent * outputs can be used in the program as (non-retentive) flags.

*Non-existent means
- either the relevant I/0 module locations are not occupied

- or the configuration with 5 input/3 output modules does not make use
of the full address complement of 64 outputs (see also section 5.1).

1.7

1.3 The complex program elements

The operations of all program elements are listed in Section 5.

Timers, counters, impulse relays, jump functions and sequence cascades (drum se-
quencers) are termed 'complex functions' as further data are assigned to them in
addition to the signal states '0O' and '1'.

Selecting one of the above functions on the programmer generates a 'box' into which
the specific data for the relevant function are 'entered' in the next programming
steps.

1.3.1 Timers

The operations of all program elements are listed in Section 5.

A timer is controlled via the START and HOLD inputs.

After the set time has elapsed, output Q of the timer changes from '0O' to 'l',
and output Q from '1' to '0'.

Starting the timer: The timer starts when there is a signal change from 'O’
to '1' at the START input.

Holding the timer: When the signal changes from '0O' to 'l' at the HOLD input,
the timer is stopped until a zero signal appears at the
HOLD input.

Resetting the timer: If there is a '0' signal at the START input, the timer is
reset to the initial value.

Scanning the timer: The_actual state of the timer can be seen via outputs Q
or Q or scanned via a TX contact element.

Entering the time: The desired time can be entered as
- a constant (CON)
- a register time (RT)

The constant is entered when programming.

The register time can be entered after program genera-
tion or it can also be modified in RUN mode. If no
value is entered, the maximum time, i.e. 999 minutes,
is stored in the register after a general reset of the
105R PC. '

1.8

Entering the time code:

Example

Timer tolerances:

Example:

1.9

The desired time is entered in the form A.B.

The letter B stands for time base and the A for a
constant multiplier.

A=1 to 999

B =0 for time base 10 ms
1 for time base 100 ms
2 for time base 1 ms
3 for time base 1 min

If 10.2 is entered, the time set is 10 x 1 s
= 10 seconds.

Each timer has a maximum inaccuracy of the order
of the time base selected. It is therefore advis-
able to use the smallest time base possible.

Run time 8 seconds
Representation 8.2 max. error 1 seconds

80.1 max. error 0.1 seconds
800.0 max. error 0.01 seconds

Formal rules for using timers in the program

Timers can be incorporated into a rung like contacts.

. o —T1q . o o . . .Qe6 .

Scanning or continuation of the output in the same rung is not mandatory; it is
therefore permissible to scan a timer as a contact:

T TN T DS DU PR PR
A A e e e
F;f—fmf;ﬁ;fﬂ_ﬂﬁﬁ
. T . 0
ﬁ“if {)

AHW?T | | | | »
l._r__l_m_l___l___l_ R I
R i | A | | l
e T T T T T T

The timer is_entered in the "START TIMER 1" function box.
Output Q or Q of the timer are available for both the START TIMER and HOLD
TIMER function boxes.

The output of a timer must not be brought back to the START input.

When there is a change from RUN to STOP and HOLD, the times are stopped.
When changing over from STOP to HOLD or RUN the stopped timer is reset.
When changing from HOLD to RUN (only possible with programmer), the timer
continues to run from the point at which it was stopped. .

~Illegal
.|Zreturns:

Il

1.10

Typical examples
1. "ON" delay, not Tlatched:

Lamp #.6 only lights up when
contact I@.1 has been closed
for longer than 1 second.

If there is a 'l' at input Ip.1,
timer Tl is started.

After 1 second, Tl has elapsed and
output Q becomes 'l'.

A '0' signal at If.1 resets the
timer.

If input I@.1 changes from 'l' to
'0' while the timer is running,
output Q stays unchanged at 'O’
and the timer is reset once more.

1.11

101 —
|
|
|
|
|
— Q0.6
—11—
0 101 Qa6
— [—— Q———— 4
101

i1

2.

'OFF' delay:

Lamp Q@.6 is bright for 10
minutes after contact I@.1
has opened.

If there is a 'l' signal at 1nput 4.1,
negated input I@.1 is '0'. A 'I1° s1gna1
at input If.1 latches output QP.6 to
'1', If the signal state of input 1p.1
changes output Q@.6 is latched to '1'.
If the signal state of input I@.1 now
changes from '0' to 'l', timer T4 is
started with a time of 10 minutes.

When the time has elapsed and if there
is a '1' signal at 1@.1, output Q@.6

is set to '0'.

If the signal state of input If.1
changes from 'l' to '0' while the timer
js still running, output Q@.6 does not
change its signal status and remains
'1'.

. Clock pulse generator

After contact If.3 is energized, out-
puts Q.6 and Q@.7 are set alternate-
1y with selectable time constants.

When contact I8.3 has a 'l' signal,
TP is started. After two seconds, T
sets output Q@.6 and s1mu1taneous1y
starts T1. After one second, T@ i
reset by Tl. This resets Qf.6 and
then T@ can start again.

101 I[——
|
|
|
— Q8.6
¢ 101 Qo6
— | {L)—e
101 T Qo 6

& s Qp——U}—e

CON 103

101

p 103 T

T0—, —T1
p 103 T1 1
T As Q S
200.0 100.0

4 H4

y////// A7

Qo6

%%%l

|
|
T
|

1.12

1.3.2 Counters

The operations of all program elements are listed in Section 5.

A counter is driven via the SET, COUNT UP and COUNT DOWN inputs. Output Q of both

elements changes from '0' to 'l' when the relevant final count has been reached.

Setting the counter:

Counting up:

Counting down:

Scanning the counter:

Entering counts:

Counting range:

1.13

The counter is enabled and is set to the initial count when

the signal changes from '0' to 'l' at the set input.

Each time the signal changes from '0' to 'l' at the COUNT
UP input, the count is incremented by 1.

Each time the signal changes from '0O' to 'l' at the COUNT
DOWN input, the count is decremented by 1.

The current counter state can be ascertained via the out-

puts Q or Q at the COUNT UP and COUNT DOWN counter elements.

The initial and final counts of the counter can be
entered as

- a constant (CON)

- a register value for data (DR)

The constants are entered when generating the program.

The register values can be entered after program
generation or can also be modified in the RUN mode.

If no value has been entered, the highest data value,
i.e. 32767, is stored in the register after a general

reset of the 105R PC.

0 to 32767

Formal rules for using counters in the program

Counters can be incorporated into a rung like contacts.

| . et e . . .Q
A T

Scanning or continuation of the output in the same run is not mandatory; it is

therefore also possible to scan the counter as a contact:

Q9.6 becomes 'l', if counter C@
has reached the lower limit.

A counter can be addressed via the SET (S), COUNT UP (CU) and COUNT DOWN (CD)

inputs:

r/|]._' .|§W | L
'._‘_.l 99 || | | | | |
e Y N N T P T
7] }————CU Q - {
j_.|___199__|__|__|_ S _Ij&
Rl | | | | o
i AT | |] s
| . | . .

The count values are entered in function boxes:

SET (S) Initial count (here: 99)
COUNT UP (CU) Upper limit (here: 199)
COUNT DOWN (CD) Lower limit (here: 0)

Outputs Q and Q of the counter are available on the COUNT UP and COUNT DOWN

function boxes.

I

06

L Foe | | | |
ﬂﬁ%ﬁhﬂjf_f#fj_ﬁfﬂ
‘7fr_TmTﬂTrﬂf?f~ﬁW
%-_1%7 | | | [| | {ﬁ{

.14

of the counter are set to O.
counter entered.

current count is retained

- The current count is retained when changing over from RUN to STOP or HOLD.
- When changing from STOP to HOLD or RUN, the current count and output Q

- Only when a rung with START COUNTER is reached is the initial count of the

- When switching from HOLD to RUN (only possible with programmer), the

Example:

Three-to-one frequency scaler
After enabling via I@.2, the Tlamp
Q.6 lights up at every third
pulse at I@.1.

The scaling ratio is specified by

the initial value in the START count-
ing element:

Binary scaler: CON
10:1 scaler: CON

2
10

1.15

w2l 000000
Y % Z

—C0 —

g 102 Qa6
— /s

3
g 1o 00 Q056
—| —— —L)—e

0
¢ L0 Qo6
1»—{/‘h —{U —

1.3.3 Impulse relay (transition-sensitive pulse)

The operations of all program elements are listed in Section 5.

An impulse relay reacts to a change of signal from '0' to 'l' at the START input
by producing a pulse at the output.

Starting an impulse relay: When the signal changes from '0' to 'l' at the
START input, output O is set to 'l'.

Pulse duration: . If during cyclic program processing a rung is
reached which contains the complex impulse re-
lay function, output Q is set from '1l' to '0°.
The signal state at the START input is of no
consequence.

Scanning the impulse relay: The current state of the impulse relay can be
’ ’ ascertained via outputs Q or Q or scanned via
a contact element.

Resetting the impulse relay: When the signal changes from 'l' to 'O' at the
START dnput, the impulse relay is prepared for a
new pulse.

.16

Formal rules for using impulse relays in the program

Impulse relays can be incorporated in a rung in the same way as contacts.

6

POy 1. L. 1. |.Fes

(L

i
=
T

Scanning or continuation of the output in the same rung is not mandatory;
it is therefore also possible to scan the impulse relay as a contact.

U L -
| | 1rPe | | | |
AR 0 (it et il
Pg l . | |_Fﬂ.6.
1

Pulse duration

s b

]
N 77

teycle

START P§
|
| I
I |
Ieycle!

B e

If the impulse relay is scanned once
only in the program, the output pulse

lasts for the length of one cycle. End of program

_

1.17

st 70000
7

I
|
o
lfwl |

Ieycle!
cycle |

The next time a PO is scanned, Q becomes
'0' again. Signal state 'l' applies only
for the time between the two P@ opera-
tions.

Typical examples:

1. Positive edge evaluation.
If the signal changes from
'0' to '1' at the START in-
put of P1, Q1.6 is set to
'1'. If I1.0 changes to '0',
Q1.6 is reset.

2. Negative edge evaluation
When the signal at the START
input changes from 'l' to
'0', flag F1.7 is set.

()

Beginning of program
START PO
@ - - 2
>
- START Py
Program end
— P1—,
¢ 12 Q16
— S Q {L+—o
o I10 Q1.6
— —(U—e

we 00

Q output %
of P1

v/ |
110 ////]://///// Y
Q16 __A////////

' fcyclel[feycle=cycle time:

' —P7
o 1M] FI7
/s a {L

Scanning for 0 signal

m_ P77
77 7

F17 Y

/]

teycle=cycle time ltcyclel
-

1.18

1.3.4 Jumps

The operations of all program elements are listed in Section 5.

The jump function makes it possible to skip one or more program blocks. A jump
can be made from anywhere within a program block; the jump destination is always

the start of a program block.*

Jump condition: If the input of the jump function has a 'l' signal, a jump

is executed.

If the input has a '0' signal, the following program is

processed.

Jump destination: The destination can be specified as

- a constant

- a register stored value for data (DR)
The constants are entered when generating the program.

LARGE.

32767, is stored
of the 105R PC.
The 105R PC does not start because of the error DR X TOO

The stored values can be entered after program generation
or can also be modified in RUN mode.

If no value is entered, the highest data value, i.e.

in the register after a general reset

Jump range: 0 to 63

The target program blocks must be available in the program.

Jump direction: Jumps are permissible both forwards and backwards.

An endless loop must not be created when jumping back-
wards as the 105R PC otherwise enters the STOP state ow-
ing to the scan time being exceeded.

Formal rules for using jump functions in the program

Jump functions complete a rung. They have no output.

Unconditional jump

Whenever the program reaches the
rung, a jump takes place to pro-
gram block 13.

Conditional jump

The jump is only executed if I1@.p
and I@.1 have a 'l' signal. If one
of the two inputs has a '0' signal,
the following program is processed
(in the example: latching the out-
put)

* see also page 1.23
1.19

o)

[13

0 100 101 rJ
=l]

) (QO.7 _
(1]
"-———_ - ® -

1.3.56 Sequence control systems/sequence cascades (drum sequencers)

The operations of all program elements Starnt , L.
are listed in Section 5. | Ster enabling condition
A sequence cascade or drum sequencer Step 0 :
has a maximum of eight steps. Depend- 1 i '
ing on the step enabling conditions, Step |1
these are run through one after the "
other. A step flag is assigned to { f
each step. Only one step is activated Step 2
at a time. i
E r— 1}
Step 7
End
Starting a sequence cascade: When the signal changes from '0' to 'l' at a
START input, the sequence cascade is enabled.
Stopping a sequence cascade: When the signal at the HOLD input changes from

'0' to 'l', the sequence cascade is stopped.

Scanning the sequence cascade: When the last stop has been reached, the sequence
cascade output assumes the 'l' state.

Resetting: When the signal state at the START input changes
from '1' to '0', the sequence cascade is reset.

Entering the number of steps: The number of steps can be entered as
- a constant (CON)
- a register value for data (DR)
The constants are entered when generating the
program.

The register values can be entered after ge-
nerating the program or can be modified in

RUN mode. If no value is entered, the highest
data value, i.e. 32767, is stored in the
register after a general reset of the 105R PC.
The 105R PC does not start because of the
error < DR X > TOO LARGE.

Step numbers: 0...7

(The maximum number of steps can be increased
by connecting sequence cascades in series).

1.20

Formal rules for using sequence cascades in the program

Sequence cascades can be incorporated into a rung like contacts

| N e 1 N R I LT .Qes
| i+ {1

1 P P N A

Scanning or continuation of the output in the same rung is not mandatory; it is
therefore possible to scan the sequence cascade as a contact.

l l 1o, I | | | :
”Hhﬁhfjf_fﬁf_fﬁfﬂ
l'_.____;__'______"___'____ﬁ'
0g | | | | . lass
?_—4}7 | | | | I I I (}_ﬁ

ISP e | RS Y Y DY I L
HFFQ: o o
G I
ﬁﬁk%mf_f_f_f_F—Fﬁ

The highest step number_is entered in the 'START' function box of the sequence
cascade. Outputs Q and Q are available on both function boxes.

Programming a sequence cascade

Sitep

. . enabling
The programming sequence shown in the conditions

diagram (right) must be adhered to. It
is -advisable to divide the program into
several program blocks for clarity.

Contrnol section:
START/HOLD
sequence cascade

Command output
section

1.21

Step enabling conditions

In the first part of the program the
enabling conditions for the step flags
are evaluated.

S 9.
Step flag —————~—J J
9

¢

Sequence cascade D@
Step flag for step

Control section

In the control section the sequence
cascade is linked into the general
program. The sequence cascade is
started when contact If.@ = '1' and
condition F@.5 = '1' is fulfilled; it
can be stopped when If.1 = '1'. When
the sequence cascade reaches step 6,
output Q@.6 is set to 'l'.

101

0 Se.9
o——] { < }—e
o T2 100 S01
— 3 F — >
0 103 S@3
r E —
0 107 S0.6

E el

Fig. 5 Enabling conditions for 7

step flags of sequence

cascade D@
o 100 Fos 00 e
It S R— 4
6
101 0
G .
E H

Fig. 6 Calling up a sequence
cascade in the program

1.22

Command output section

In the command output section the out- I)
put commands are assigned to the indi- o 200 :
vidual steps. — F S
10
Only one step flag has a 'l', output 43
Q1.8 has been latched in step 0. It " o1
therefore remains set during step 1 g 2% ;
and is not reset until step 2 is +—] { ~ —e
reached. g S02 Q12
—} { }—e
Q19
——U}l—e
Q11
¢« }—e
0 S@6 Q25
—]f (

Fig. 7 Command output section of
a sequence cascade

- A jump must not be made into or out of a sequence cascade.

- If, for example, a certain waiting period must be observed between steps 5
and 6, a timer must be started with the command output of the 5th step. In
the step enabling condition for the 6th step, the timer must be scanned for
its signal status.

Each waiting period requires its own timer.

- If more than eight sequence steps are required in a sequence cascade, se-

- quence cascades can be connected in series. This means, for example, that
sequence cascade D1 is started when the output Q of D@ is scanned:

MF—_D‘T) ‘—%

- Step flags in sequence cascades not used may be used in the program as (non-
retentive) flags. However, they cannot be permanently forced (see Section
3.4, Forcing).

- When changing over from RUN to STOP or HOLD, the current step flag remains
set.

- When changing over from STOP to HOLD or RUN the sequence cascade is reset.

- When changing over from HOLD to RUN (only possible with programmer), the se-
quence cascade is processed from the current step flag on.

1.23

The design of a sequence control system
based on the example of a control
system for a stamping machine is des-
cribed below. The following steps are
to be executed consecutively:

1. When a stamping piece is located
in front of the slide arm (S5 =
19.0), the slide arm (Y1 = Q@.5)
pushes the stamping piece into the
die.

2. When the die is loaded (S6 = I1@.1)
and the slide arm is in the idle
position (S7 = I1@.2), the stamping
tool (Y2 = Q@.6) presses downwards.
After the stamping tool (S8 = I@.3)
has been in contact with the stamp-
ing piece for two seconds, the
stamping tool returns to its idle
position (S9 = 1@.4).

3. After the stamping operation (S9 =

10.4), the ejector (Y3 = Q@.7) ejects

the finished part from the die.

4. A stream of air (Y4 = Q1.5) from the

air nozzle then blows the stamping
piece into the container. A photo-
electric cell responds (Bl = I1.3)
when the stamping piece drops into
the container.

Process schematic

8.6
Y2
—{><}—
| — J Iﬂ.‘
W
Magazine —=
- 1.3
S8
18.2 . 1.3
Stamping
SL Slide arm [tool B

- Air nozzle

,
i cell
%

Stamping

P1EC Stamping die

151
'__‘\ .4 Start

®g;5 Automatic mode

L\'S2 End of
\11.1 machining process

Fig. 8 Example of a sequence con-
trol system for a stamping
machine

, Photoelectric

5. The next stamping operation can
then begin.

A11 three cylinders are equipped with
return springs so that the slide arm,
stamping tool and ejector return to
their idle positions when the corres-
ponding valves Y1, Y2 and Y3 are
switched off. The initial condition
is: A1l valves Y1 to Y4 closed and
stamping die empty.

Program structure

Mode section
Initial condition
Start pulse
Modes
Enabling operations
Set sequence cascade

Mode section @H‘] to initial condition

Set sequence cascade to Enable sequence
initial state cascade

Structure of a sequence control system

Select mode
$1...54

Step enabling conditions

Step enabling

$5...87,81 —= s N Step display
conditions @ H2-Hk [

Commands from ___—{ CEnabling of

sequence cascade command output
END
Command output ! X ...k

Fig. 9 Basic structure of the control
system for the stamping machine

Command output

1.24

The principle of a sequence contro]l
system is to break the process down as

far as possible into discrete steps.
Accordingly, the program itself largely
consists of consecutive steps. These

are combined to form a sequence cascade.

Each step of this cascade is processed

individually. The next step is not pro-

cessed until processing of the previous

..step has been completed. This greatly

simplifies the program, since the in-

terlock conditions can be omitted.

To process a step only the signals

pertaining to the step concerned need

be used; the others are disregarded.

A sequence control system consists of

three parts.

1. The conditions for individual
modes such as start, stop, auto-
matic and single step are pro-
cessed in the mode section.

2. The actual program of the control
system is processed in the step
enabling conditions. The indivi-
dual steps are executed in de-
pendence on the step enabling
conditions.

3. The step commands are gated
in the command output sec-
tion with the enabling signal
from the mode section and, where
applicable, with interlock sig-
nal from the machine. As a re-
sult, the actuators are switched
on and off via the outputs of
the programmable controller.

In the case of the stamping machine,

the flowchart for the sequence cas-

cade would be as in Fig. 10. The

stamping machine must assume its ini-
tial condition to permit the sequence
cascade to be started. This means that

valves Y1 to Y4 are closed (Q@.5, Q@.6,

00.7, Q1.5 are '0') and sensors S5, S7,

9 (I1g.p, 10.2 , 1p.4) are 'l' while

sensors S6, S8 (I1@.1, I1f.3) are '0'.

Only when these conditions are ful-

filled can the sequence cascade be

started with pushbutton I1.0. Push-
button I1.2 serves to stop the sequence
cascade without switching the pro-
grammable controller to the stop

state. A1l these signal statuses are

scanned in the mode section (see

Fig. 12). Measures to implement the

initial condition can also be pro-

grammed in this section.

The step enabling conditions (see Fig. 11)
can easily be read from the arrows enter-

ing Fig. 10 from the right.

1.25

~—— HOLD

START

* Enable

Intitial condition

Stamping piece Ln
gront o? side arm

Step S0.0
Open valve Y1

Stamping piece in die

i

Step S0.1
Close valve Y1

Stéde anm in idbe position
i

Step S0.2
Open vatve Y2

gﬁmmuyg zboejyu5424
1

Step $0.3
Hotd stamping toof for
2 5ec.on stamping pLece

it ts

Step S0.4
CLose valve V2

noLng Lool
n 108 .

|

Step S0.5
Open valves Y3 and Y4

S s,

1

Step S0.6
Close valves Y3 and V4

f

Fig. 10 Flowchart of the sequence cas-
cade for the stamping machine

The command output (see Fig. 13)
shows the outputs as a function of
the step flags which can also be
found easily in Fig. 10.

Stamping machine program

Measunes zu
LmpLement
the initial
condition gon
Zthe stamping
machine

Secan of
initial
condition

100
L

e

01%17

G110 113 Fo1
e e L e e

gQQS Q0.6 Q07 Q15

R

F39 102 103 194

33333

2l Sl | ol S | A | S
g 111 FO0
< . |
F@1
pifs
:)
12 CON6
\"ﬂ% P_H |
599
C
5%1
5302
L
S¢3 [—TZ—
E_*_%onzz
S@4
4
5505
L
S0.6
L

Fig. 11 PB1

Step enabling
conditions for the
stamping machine

Fig. 12 PB 2
Control section
for start, hold

Contrnol system on

Control system off
Starnt sequence
cascade

with contnol
Aystem on

Hotd sequence
cascade

Fig. 13 PB 3
Command output for
the stamping machine

1.26

2. Program generation with the 105R PC

2.1 Program input and correction

Preparation

A program can only be entered in the
105R PC if there is no memory submodule
plugged in.
When generating a new program, select
the programmer function ERASE PROGRAM
(general reset). This causes
- the internal program memory of the
105R PC to be deleted
- the process image of the inputs
.and outputs to be deleted
- flags to be set to "O"
- current values of the timers to be
deleted and the run time set to 999.3
- current values of the counters to be
deleted and the count Tlimits set
to 32767.

Input

- Select the INPUT/DISPLAY programmer
function

- Enter program block number

- Enter program

Correction

The following can be deleted:
The entire program
Single PBs
Single rungs
Single program elements

The following can be inserted:
Program elements
Rungs

The following can be overwritten:
Program elements
Rungs
PBs

The following can be assigned new numbers:

Program blocks
The entire program

For further details, see the
User Instructions of the 605R
and 655R programmers.

2.1

Remove memory submodule
(with power turned off)

Sefect ERASE PROGRAM
gunction on programmenr

v

Sefect INPUT/DISPLAY
proghammen qunction

Enten numben of
program bLock (PB)

!

Write PB
Onganise and check BP with
key on proghammer
PB gautty:
Conrect or E;?ﬁiﬁ;?;?
ne-enten
]

W——J

Enten next PB number

v

Test and correct progham

v

Program OK

2.2 Example of program generation

The task definition of the system is
the first item required when writing
the program. This task definition in-
cludes a process schematic showing the
object to be controlled with reference
to the technological relationships in
the process (points of installation of
sensors and actuators, material and
material flows, directions of motion,
etc.). Taking in the example in Fig. 14
as a basis, the task definition is as
follows:
The bulk material is to be transferred
from a container via a conveyor belt
and loaded into a waggon. The control
sequence is enabled with pushbutton S1
(indicator lamp H1 lights up) and dis-
abled with pushbutton S2.
When the control system is enabled,
motor contactor K1 switches on the con-
veyor belt if a waggon is situated in
the filling position (1imit switch S3).
The conveyor is switched off again if
a waggon has left the filling position
and the next waggon to be filled has
not reached the filling position with-
in 20 seconds. Slide valve Y1 is opened
if the conveyor motor is switched on
and an empty waggon is ready for filling.
The slide valve is closed again when
the weight set on scale Bl 1is reached.
The commands for opening and closing
may only be active until the slide
valve has reached the new position.
In order for the bulk materials still
on the conveyor to be transported to
the waggon, latching pawl Y2 is only
opened 10 seconnds after the "Full"
message. The latching pawl is imme-
diately closed again when the filled
waggon has left the filling position,
i.e. a contact of limits switch S3 has
opened again.
When the next waggon reaches the fill-
ing position, the described operation
is repeated until the control sequence
js disabled with pushbutton S2.
The next step is to draft the general
structure of the task definition for
the programmable controller, i.e.
. Arrangement according to a monitoring
scheme (signal statuses of sensors)
. Modes (idle condition, etc.)
. Machine functions (stop motor, etc.)

Process schematic

H1 Sequence is
®0¢.5 enabled

Container 1 ST Control sequence
E"\ 16.¢ enabled

e S2 Inhibid control
1#.1 sequence

[l

} .
[Latching pawl
V2 gp

Limit svitch._j-_
$3

k1 Ay 19.3 0.7
0#).6‘:}\' \ 81 i} Scales
Motor contactor Iﬂ-’*__.“__
Fig. 14 Filling waggons from a con-
veyor belt

N ST
OFF sz»Z

@lﬂ Enable
Filling , |
position>’® Switch conveyor

4

P— beltmotor on and) Conveyor
Conveyor off; delay time _\ K1 belt motor
belt motor K1Y I
Scales B1 m—-'7 \
\ _? Open and close i_¥ Y1
YW slide valve 1S Slide valve
—~* Close

Enable control
sequence

- Open

Slide valve |

| Release latching

pawl; delay time -E] v2

Latching pawl

Fig. 15 Structural diagram for waggon
filling system

Based on the structural diagram and
the process schematic, the assignment
list can now be compiled; sensors and
actuators are assigned to the termi-
nals of the PC, as is already partly
the case in Fig. 14.

2.2

Operand Device Functional
identifier description
Inputs:
10.0 S1 ON pushbutton, enable control sequence,
idle condition is 'O’
I9.1 S 2 OFF pushbutton, disable control sequence,
idle condition is '1'
I g.2 K1 Motor contactor, acknowledgement, conveyor
motor is ON, idle condition is 'O'
I¢.3 S3 Limit switch, waggon in filling position,
idle condition is '0'
I 0.4 B1 Scalﬁs, waggon is full, idle condition
.IS 1]
I11.9 Y1 Slide valve, acknowledgement, valve is
open, idle condition is '0'
I11.1 Y1 Slide valve, acknowledgement, valve is
closed, idle condition is '1'
Outputs:
Q 9.5 H1 Indicator lamp, control system is enabled,
idle condition is '0'
Q @.6 K1 Motor contactor, switch conveyor 1, idle
condition is '0'
Q1.5 Y1 'Open' slide valve, idle condition is 'O’
Q1.6 Y1 'Close' slide valve, idle condition is '0O'
Q1.7 Y 2 Release latching pawl, idle condition is 'QO'
Timers
T0 20 sec. delay for conveyor motor
T1 - 10 sec. delay for latching pawl

The number of inputs/outputs can be read

109 Qo5

of f the assignment list. The PC can now £t L)

be installed and the inputs and outputs 1% 93;_

can be wired. 5 103 —T0— F27

/E—i‘ S o

oE_;%% CON202 gai:_

The program can now be written while the F27. 111 Sbi—

mechanical and electrical part is being NS St {UH
installed. The program for the example 151

for the "Waggon filling system" is

. 16 Assignment Tlist for waggon filling system

shown in Fig. 17.

When the program has been written, it is
loaded ito the PC and tested.

2.3

2
g Q0.5 104 T J0.3 Q17
I, g3 E——

Fig. 17 Program for the waggon
filling system

3. Program test
3.1 Search function

Within a program this function searches for the following:

- Operands e.g. I11.3, F3.¢, T1
- Program elements, e.g. 3, I1.3, AL+ F3.¢, +HSIT1

It can be executed in the programmer functions

- INPUT/DISPLAY
- PROG. TEST

Search function within a program block (PB)

The rungs containing the element searched for are displayed on the programmer.

Search function in the entire program

There is only one program block in the programmer at one time. When this has
been checked, the search continues in the memory of the 105R PC. The PB numbers

containing the term sought are displayed on the programmer. For precise loca-
tion, the respective PB can be brought into the programmer.

3.2 Signal status display [

. Read in process
At the end of each processing cycle image of inputs
the following can be observed on the
programmer : [
- Signal states of operands
e.g. 10.3, F3.7, Q1.6

- Current values and signal states of PB 0
timers, counters, impulse relays -
and sequence cascades. Block checkpoint

Two checkpoints can be selected:

- At the end of a PB*, with the PB 1

PWRFLOW/FORCE programmer function

- At the end of the program (program Block checkpoint

checkpoint) by means of the STATUS/

SET programmer function /,»-———-*"T'__"__-’__
|

Transgen process

output {image
* It is always the checkpoint of the |
program block currently in the pro-
grammer which is processed. Program
} checkpoint ‘

3.1

3.3 Forcing

Forcing is the once-only assignment of a

signal state to an operand (e.g. I0.3, P it ~
F3.5, T1)

This default is only valid until the Read 4in process

operand is assigned the current signal Amage of Lnputs

state by program processing.

!
Once-only \\ﬁ
assignment
/!
Program

Process output
Aimage

==t e — - — — —|n-

4

- -

N e e e e -

Fig. 18. Once-only assignment of
signal state when forcing

3.4 Permanent forcing

Permanent forcing is an unmodifiable

assignment of a signal state to an The following cannot be forced:
operand (e.g. 1.3, F3.5, T1) - Step flags in sequence cascades

- Output Q/Q of sequence cascades
A permanently forced operand cannot - Output Q/Q of impulse relay

be changed by assignments resulting

from the program processinng. All

permanently forced elements are

enabled by

- DISABLE FORCE (terminate permanent
forcing) programmer function

- Operation of the mode selector

- Unplugging the programmer connect-
ing cable

3.2

3.5 Single scan in HOLD mode

This involves a single, complete scan
of the program. The starting and end
point is the program checkpoint at
which the 105R is waiting in HOLD mode.

A single scan can be triggered by
pressing the key in the

- STATUS/SET and

- PWR FLOW/FORCE programmer functions

In conjunction with the forcing and per-
~manent forcing of operands, the single
scan is a convenient aid for program
testing.

{

Read in process
Lnput Lmage

Progham

7

Process output

Amage

rPiLog)Lam checkpoint 1

3.3

4. Storing the program

A valid program can be transferred from the internal memory of the 105R PC to
a plug-in memory submodule.

4.1 Storing the program on an EEPROM submodule

An EEPROM submodule is plugged into
the CPU for storing the program. The
contents of the 105R PC program mem-
ory are copied onto the submodule by]
means of the STORE PROGRAM programmer

Valid program
An PC memonry

function. ' Insesit EEPROM sub-
. module with power o044
N.B. |
- The memory submodule may only be r
inserted and removed with the Execute STORE PROGRAM
power off! programmer function
- Programs already on the EEPROM
B submodule are overwritten. I

Contents of PC memory
copded onto submodule

4.2 Storing the program on an EPROM submodule

To store a program, an empty ERPOM sub-

module is inserted into the CPU with a FLAGS RETENTIVE bit = 0
programming adapter. Vaeid program 4n PC
The contents of the 105R PC program mem- memohry

ory are copied onto the submodule by
means of the STORE PROGRAM programmer
function.

Insent empty EPROM
submodule with

programming adapiter

N.B. with power 044

- The memory submodule and program
adapter may only be inserted and
removed with the PC switched off!

- Programs in which the FLAGS RE- Call STORE PROGRAM
TENTIVE bit is set to "1" cannot programmer function
be transferred to EPROM submodules.

Contents of PC memonry
copied onto submodule

4.1

4.3 Duplication of programs

After a general reset of the 105R PC,

a memory submodule with a valid program
is inserted.

When the power is switched on, the con-
tents of the submodule are copied in-
to the internal program memory of the
105R PC.

To prepare the STORE PROGRAM function,
an entry must be made in the program

in the internal memory (see Operating
Instructions, Section 3.4 "Using the
memory submodule, Note") e.g. read

out and re-enter AUTO RESTART = X.

See 4.1 or 4.2 for further action.

Call ERASE PROGRAM
programmenr gunciion

Insent memory submodule
with valid progham
with the power 044

On power-up the program
44 copied Linto the PC

Remove memory submodule
with POWER OFF

After power-up, e.g.
call AUTO RESTART
= X and ne-enter it

I

See 4.1 on 4.2

4.2

5. Operation set

5.1 Binary operations

Symbo1 Operand

Description

=11.0 to I1.7

X X=10.0 to 10.7
sl

=17.0 to 17.7

Scanning an input for "1"

X=Q0.5 to Q@.7
=Ql.0 to Q1.7

=Q}.¢ to Q}.7

Scanning an output for "1"

X=Fg.p to F5.71)

Scanning a flag or internal relay
for "1".

X=5¢.¢ to S3.72)

Scanning a step flag for "1".

Scanning a timer for "1",

(The timer has a "1" at the Q output
if there is a "1" at the start in-
put of the timer and the time has
elapsed).

Scanning a counter for "1".

(The up-counter has a "1" at the Q
output if the specified 1limit is
reached or exceeded, whilst the
downcounter has a "1" at the Q
output if the specified Timit is
reached or if the count drops below
it.

Scanning a sequence cascase or drum
sequencer for "1". (The sequence
cascade has a "1" at the Q output if
there is a "1" at the set input of
the sequence cascade and the last
step of the sequence cascade has
been reached).

X=T@ to T31
X=C@ to C15
X=DP to D3
X=P9 to P15

1) Flags 0.8...1.7 can be set as
retentive in the case of an
EEPROM submodule

2) Used with sequence cascades.

Scanning an impulse relay
(transition-sensitive pulse) for "1",
(The impulse relay has a "1" at the
Q output for the duration of one
cycle if the signal changes from "0"
to "1" at its set input).

5.1

Symbol Operand Description

X=10.0 to IQ.7 Scanning an input for "O".

=11.¢ to I1.7
X . .
;]/E =I%.Q) to 15.7 Scanning an output for "0".

X=00.0 to Q.7

=Q1.9 to Q1.7
=Q7.9 to Q7.7

X=Fg.¢ to F5.71) Scanning a flag for "0".

X=Sp.0 to $3.72) Scanning a step flag for "0"

X=Td to T31 Scanning a timer for "O".

(The timer has a logic "0" at out-
put Q, if there is a "0" at the
start input of the timer or a "1"
at the start input of the timer and
the time has not yet elapsed).

X=Cp to Cl15 Scanning a counter for "0".

(The up-counter has a "0" at the Q
output if the specified 1imit has
been reached or the count has
dropped below it, whilst the down-
counter has a "0" at the Q output
if the specified limit has been
reached or exceeded).

X=Kp to K3 Scanning a sequence cascade for "O"
(The sequence cascade has a "0" at
the Q output, if there is a "0" at
the set input of the sequence cas-
cade or a "1" at the set input of
the sequence cascade and the last
step of the sequence cascade has
not yet been reached).

X=Pp to P15 Scanning an impulse relay for "0".

(The impulse relay has a "0" at the
Q output if there is a "0" at the
set input of the impulse relay or
a "1" for longer than once cycle.

1) Flags 0.0...1.7 can be

submodule

set as retentive in the case of an EEPROM

2) Used with sequence cascades.

5.2

=Q7.0 to Q7.7

Symbo1 Operand Description

A X=0 to 143) The nodes are used for combining
rungs. Each rung begins with a node.
The connection to the left-hand
power rail is always made with
node 0.

X=Q0.9 to Q0.7 Set output to "1"
X =Q1.9 to Q1.7

X=FP.9 to F5.71)

Set flag to "1"

X=S¢.0 to S3.72)

Set step flag to "1"

X
/)

X=10.9 to 19.7
=I1.0 to I1.7

Set input to "O""
(The "0" is only entered in the pro-
cess image).

=q7.9 to Q7.7

=17.6 to 17.7
X=00.0 to Q0.7 Set output to "0"
=Q1.¢ to Q1.7

X=F@.¢ to F5.71)

Set flag to "0"

X
{Lr

X=008.9 to Qf.7
=Ql.¢ to Q1.7

=07.8 to Q7.7

Latch output to "1"

X=Fp.¢ to F5.71)

Latch flag to "1"

X=1¢.0 to 1p.7
=11.0 to Il1.7

Set input to "0"
(The signal status is only entered
in the process image).

=Q7.p to Q7.7

=17.8 to 17.7
X=Q0.9 to Q0.7 Unlatch output
=Q1.¢ to Q1.7

X=F@.¢ to Fl)

Unlatch flag

1) Flags @#.@ to 1.7 can be set as retentive in the case of an EEPROM submodule.
2) Used with sequence cascades.
3) Display on 605R programmer in hexadecimal, @ to E

5.3

5.2 Cdmplex operations

Symbo1

Operand

Description

Start timer
X

Y

Y = Time = Time value
time base

X=T@ to T23

Y=CON 1.9 to
CON 999.3

or

Y=TRO to TR23

A "I" signal at the S input
starts the timer. Output Q is
"1" if there is a "1" at the
S input and the specified time
has elapsed.

Q can also be used as out-
put, with the inverted signal
of Q.

The constant Y, obtained by
multiplying a time value with
a time base, gives the time
(e.g. 8.1 = 800 ms).

Time value: 1 to 999 The constant Y can also be re-
Time base: 0 = 10 ms placed by a time register TR,
1 = 100 s in which case it is inde-
2% 1ms pendent of program input.
3= 1 min
Hold timer X=T@ to 31 A "1" at the H and S inputs
X of the same timer stops this
_ timer. Output Q is "1" if
—1y al— there is a "1" at the S input
of the same timer and the spe-
cified time has elapsed.
Q can also be used as out-
put, with the inverted signal
of Q.
Impulse relay (transition- X=P@ to P15 With every change from "0" to

sensitive pulse)
X

—Is Ql—

a "1" at the S input, the Q
input changes to "1" for the
duration of one scan.

Q can also be used as output,
with the inverted signal of Q.

Jump

Y=CON @ to CON 63
or
Y=DR@ to DR23

A "1" at the J input has the
effect of implementing a jump
to a program block whose num-
ber is specified by constant
Y.
Constant Y can also be re-
placed by a data register DR,
in which case it is inde-
pendent of program input
Depending on the programming,
unconditional jumps can be
executed with this opera-
tion.

5.4

Symbo1

Operand

Description

Set counter
X

X=C@ to C15

- Y=CON g to

CON 32767

or
Y=DR@ to DR23

A "1" at the S input causes
constant Y to be loaded and
enabled.

Y can have any value between 0
and 32767.

The constant Y can also be
replaced by a data register
DR, in which case it is inde-
pendent of program input

Count up

X=C@ to C15

Y=CON ¢ to
CON 32767

or

Y=DR(to DR23

With every change from "0"

to "1" at the CU input, the
previous count is incremented
by 1.

Constant Y specifies the up-
per limit of the counter. If
this 1imit is reached or ex-
ceeded, the Q output changes
_EO |l1ll.

Q can also be used as output,
with the inverted signal of Q.
Constant Y can also be re-
placed by a data register DR,
in which case it is indepen-
dent of program input.

Count down

—co af—
Y

X=Cg to C15

Y=CON @ to
CON 32767

or

Y=DR@ to DR23

With every change from "0" to
"1" at the CD input, the pre-
vious count is decremented by 1.
Constant Y specifies the lower
1imit of the counter. If this
1imit is reached or if the
count drops below it, the Q
output changes to "1".

Q can also be used as output,
with the inverted signal of Q.
Constant Y can also be re-
placed by a data register DR,
in which case it is indepen-
dent of program input.

5.5

Symbo1

Operand

Description

Start sequence cascade

X

X=CP to C3

Y=CON @ to CON 7
or
Y=DR@ to DR23

A "1" at the S input starts and
enables the sequence cascade.
Constant Y specifies the number
of the last sequence step. :
Constant Y can also be replaced
by a data register DR, in which
case the constant is indepen-
dent of program input.

The Q output is "1" if there

is a "1" at the S input and the
last sequence step has been
reached.

Q can also be used as output,
with the inverted signal of Q.

Hold sequence cascade

X=C@ to C3

A "1" at the H input holds

the sequence cascade at a par-
ticular sequence step. The Q
output is "1" if there is a "1"
at the S input and the last
sequence step has been reached.
Q can also be used as output,
with the inverted signal of Q.

Subject to change without prior notice.

5.6

SIEMENS AKTIENGESELLSCHAFT

Order No.: GWA 4NEB 810 0221-02
Printed in the Federal Republic
of Germany

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

