Programmable Controllers
SIMATIC S5-110S/B

Programming Instructions

SIEMENS

SIMATIC S5-110S/B
Programmable Controllers : 6ES5—110

Programming Instructions Order No.: GWA 4NEB 807 2122-02

Bliminy

®

whEE EBEE

$5—110S Programmable controller: CPU (left), peripherals (right) and the 670 programming unit (foreground)

Contents:

1. Introduction

1.1 Application

1.2 STEP 5 programming language
1.3 Programming

1.3.1Program structure

1.3.2 Program organisation

1.3.3 Program processing

1.4 General notes

2.Program blocks
2.1 Programming program blocks
2.2 Calling program blocks

3.Datablocks
3.1 Programming data blocks
3.2 Calling data blocks

4. Function blocks

4.1 General

4.2 Structure

4.3 Calling function blocks for parameter assignment
4.4 Generation of function blocks

4.5 Standard function blocks

5. Organisational tasks

5.1 General

5.2 Overview

5.3 Programming cyclic processing

5.3.1 Interface between the system program and

cyclic processing

5.3.2 Rough organisation of the program

5.4 Programming of interrupt-driven processing
(servicing a process interrupt)

5.5 Start-up and restart procedure

5.6 Evaluation of device errors and exception conditions

6. Programming examples

6.1 Basic operations (program and data blocks)
6.1.1Binary logic functions

6.1.2 Setting/resetting functions

6.1.3 Loading and transfer functions

6.1.4 Timerfunctions

6.1.5 Counter functions’

6.1.6 Comparison functions

6.2 Supplementary operations (function blocks)
6.2.1Binary logic functions

6.2.2 Digital logic functions

ne
[«)
«Q
GO A NN W W o

o oo

~N oo

12
13

15
18
19

20
20
20
23
25
26
29
31
34
34
35

Page
6.2.3 Arithmetic functions 35
6.2.4Jump functions 36
6.2.5Timer and counter functions 36
6.2.6 Shift functions 36
6.2.7 Conversion functions 37
6.2.8 Decrementing/incrementing 37
6.2.9 Disable/enable command output 37
6.2.10 Disable/enable interrupts 38
6.2.11 Processing functions 38
6.2.12 Substitution functions 39
7. Rules governing compability between the LAD,

CSF and STL methods of representation 42
7.1 General 42
7.2 Rules governing compatibility between the graphic methods 43
7.2.1Inputin LAD, outputin CSF (STL) 43
7.2.2Inputin CSF, outputin LAD (STL) 43
7.3 Rules governing compatibility between the

STL and graphic methods 44
8. Notes on estimating the required memory space 54
9. Total overview of STEP 5 operations 55
9.1 Basic operations 55
9.1.1 Binary logic operations 55
9.1.2 Setting/resetting operations 56
9.1.3 Timer and counter operations 56
9.1.4 Loading and transfer functions 57
9.1.5 Comparison functions 58
9.1.6Block calls 59
9.1.7 Other commands 59
9.2 Supplementary operations 60
9.2.1Binary logic functions 60
9.2.2 Digital logic functions 61
9.2.3 Arithmetic functions 61
9.2.4 Jump functions 61
9.2.5Timer and counter functions 61
9.2.6 Shift functions 62
9.2.7 Conversion functions 62
9.2.8 Decrementing/incrementing 62
9.2.9 Processing function 62
9.2.10 Disable/enable command output 62
9.2.11 Disable/enable interrupts 62
9.2.12 Substitution functions 63

1. Introduction

1.1 Application

1.2 STEP 5 programming language
1.3 Programming

1. Introduction
1.1 Application

The S5—-110S is a powerful programmable controller for process
automation (logic control, monitoring, listing, signalling). It is suit-
able both for the simplest control applications with binary signals
and for the solution of complicated automation tasks. Its user
programs are written in the STEP 5 programming language.

1.2 STEP 5 programming language

The operation set of the STEP 5 programming language makes it
possible to program functions ranging from simple binary logic to
complex digital processing.

Depending on the programming unit used, the program can be
written in three different methods of representation, ladder diagram
(LAD), control system flowchart (CSF) and statement list (STL) (Fig.
1), so that the programming method can be adapted to the applica-
tion. The machine code produced by the programming units is iden-
tical for all three methods of representation. If certain programming
rules are followed (see "Rules governing compatibility between the
LAD, CSF and STL methods of representation”, p. 41), the 670/675
programming unit can translate the statement program from one
method of representation to another.

Ladder diagram Statement list Control system

flowchart

Programming with Programming with Programming with

graphic symbols as mnemonics of the function graphic symbols
in schematic circuit designations
diagram
to to to
DIN 19239 (draft) DIN 19239 (draft) IEC 117-15
DIN 40700
DIN 40719

DIN 19239 (draft)

LAD
BB

Fig. 1 Methods of representation in the STEP 5 programming language

1.3 Programming

1.3.1 Program structure

The structure of the S5—110S programmable controller compels the
user to adopt structured programming techniques, i. e. the program
is divided into individual-self-contained program sections (blocks).
This method offers the user the following advantages:

simple and clear programming, even of larger programs,
standardization of program sections possible,

simple program organization,

easy program modification,

simple program testing,

simple start up.

Three types of block, each of which has different tasks, can be used
to contruct the user program:

Program blocks (PB)

These are used to divide the user program into technology-oriented
program sections.

Function blocks (FB)

These are used to program complex repetitive functions (e. g. indivi-
dual open-loop control, alarm and arithmetic functions) and the pro-
cessing of sequence cascades.

Data blocks (DB)

These are used to store data and text.

The maximum number of programmable blocks is

— 128 program blocks

— 48 function blocks

— 63 data blocks (without DB 0).

No block should exceed 256 statements.

All programmed blocks are stored by the programming unit in the
program memory in random order (Fig. 2). An organisation block
which is also programmed by the user, determines the sequence in
which the blocks are to be processed.

PB1
PB2

FB1

DB1

FB2

OB1

Fig.2 Location of the blocks in the program memory in random order

1. Introduction

1.3 Programming
1.3.2 Program organisation

1.3.2 Program organisation

The organisation block determines whether and in which sequence
the program, function and data blocks are to be processed (Fig. 3).
The corresponding calls (conditional or unconditional) for the
blocks required are written in the organisation block 1 (OB 1) (see
""Organisational tasks”, p. 11).

Organisation block 1 is also located in the program memory, as are
the other blocks.

The user can program function block 0 to determine his reaction to
interrupts (see p. 15).

The program and function blocks can call up further program and
function blocks in any desired combination. The maximum per-
missible nesting depth is 8 blocks, incl. organisation block, but not
including any data blocks used (Fig. 4).

OB Organisation block
PB Program block

FB Function block

DB Data block

PB

ZANEVANVAN

1 2 3 4

e
<L

PB

AWA

PB

PB

NIZANIZAN
AN

DB

—> Program processing

Fié. 3 Program organisation in the STEP 5 programming language

P8

P8

B

/N
/\

FB

i
RN

Fig.4 Example of a program structure taking advantage of the maximum nesting depth

L1

4

1. Introduction

1.3 Programming
1.4 General notes

1.3.3 Program processing
The user program can be processed in three different ways (Fig. 5).

Cyclic processing

Organisation block 1 is provided for the cyclic processing of the
user program. This block executes cyclically and calls the blocks
programmed in the user program. The maximum cycle time is 270
ms. After this, the cycle time monitoring reacts.

Interrupt-driven program processing

With this type of processing, cyclic program processing is inter-
rupted, depending on 32 input signals, at each block change. Func-
tion block 0 (FBO) is provided for interrupt processing.

Time-controlled program processing

With this type of program processing, certain program or function
blocks are inserted into the cyclic program processing in a freely
selectable time grid. The average user program cycle time can be re-
duced with this programming option.

Time-controlled blocks are not called up automatically, as with the
S5 — 150 A/K controller, but are executed as required by the user.

Note:

When programming on the time base of 10 ms, make sure that the
processing time of each individual block is < 10 ms since the times
are only processed at block boundaries!

0B1 PB
i
—— S oy e EE
— T
f i I Cyclic
i "W
Ry —— gy S S
| |
i]
FB2
‘3/ - - Interrupt-
\ R DU driven

#4 Breakpointat which interrupt-driven or time-controlled program processing can be
® inserted

Fig.5 Types of program processing

PB1 PBS

A F 20

L KT 51 Time-controlled
SET 2 program

ANT 2 processed

= F 00 at 500 ms (5.1)
C PB5 1 intervals

BE \

Example of time-controlled program processing

1.4 General notes

If standard function blocks are used, the flag bytes 200 to 255 are
reserved and are not available to the user.

Timer O, counter 0 and data block 0 are also reserved.

If the 333 C service unitis used, function block 1 and data block 1 are
reserved. Function blocks 2, 3, 4, 5, 6 and data block 2 are reserved
for the 512 interface module. Data word 0 of all data blocks cannot
be used.

Standard function blocks use block numbers 1 to 12. User function
blocks therefore can only use block numbers 13 to 47.

Programming blocks can be programmed in all three methods of re-
presentation (STL, LAD, CSF) with the basic operation set of the
STEP 5 programming language.

Note:

Programming of data words outside the relevant block can lead to
the controller entering an undefined state (Data word No. > data
block length).

The following programming errors cause the programmable con-
troller to go into stop state:

1. Programming a STEP 5 operation not in the 110 S controller’s
operation set.

2. Programming a call for an illegal block (No. too large).

3. Selection of a data word (LDW, TDW) without previous selection
of data block (CDB).

4. Exceeding the permissible nesting depth.

2. Program blocks
3. Data blocks

2. Program blocks

2.1 Programming program blocks

The programming of a program block:{PB) begins by assigning a
block number between 0and 127 (example: PB 25). This is followed
by the actual control program, which ends with the "BE" statement.
A program block should not contain more than 256 statements (in-
cluding "BE") (see Fig. 6). The block header, which the programming
unit automatically generates for the program block, takes up five
words in the program memory.

A program block should always contain a complete program.
Chaining beyond the block limits is not possible.

2.2 Calling program blocks

Processing of a program block is enabled by block calls (Fig. 7)
which can be written in organisation, program or function blocks.
Block calls can be compared to jumps to a subroutine and can
therefore be called either unconditionally (JU PB x) or conditionally,
i. e. depending on the result of a logic operation (JC PB x).

After the “BE” statement, control is returned to the block containing
the block call. The result of the logic operation can no longer be
processed after the block call or after “BE”. The result of the logic
operation is taken into the “new” block, however, and can be
evaluated (see 'Interrupt processing’, p. 15).

Unconditional call:

The program block addressed is processed independently of the
result of the previcus logic operation.

Conditional call:

The program block addressed is processed dependent on the result
of the previous operation.

3. Data blocks

3.1 Programming data blocks

Data blocks (DB) are used to store data required by the user pro-
gram.

Data may consist of:
— Any desired bit pattern, e.g. for equipment statuses

~ Numbers (hexadecimal, binary, decimal), e.g. for timers or calcu-
lation results

— Alphanumeric characters, e.g. for message texts.

Data blocks are built up like program blocks. Programming starts by
specifying a data block number between 1 and 63 (e.g. DB 25). Each
data block can consist of up to 256 data words-(16 bits) (Fig. 8).
Data must be entered in the ascending order of the data words, be-
ginning with data word 0, whereby data word 0 (DW 0) cannot be
used by the user, as it is required as a buffer for certain function
blocks.

One memory word is provided per data word in the user memory. A
block header occupying a further five words in the user memory is
generated by the programming unit for each data block.

PB25

I Block header

- STEP 5 program

255 § BE]
Fig.6 Structure of a program block

PB 1 PB 5 PB 10

P20

5
A 1 32 i | :
| I I |
Lt i 13 i

Fig. 7 Block calls which enable program block processing

0825

I Block header

Dowo 0 0 00

Dw1 3 F 4 A
Ow2 §01710_0160 0000 1111
DW3 A
DW4 T L

DWS5 1.5 2.8

| Data words
1-285

DW255

Fig.8 Structure of a data block

3. Data blocks

3.2 Calling data blocks

Data blocks (DB) can only be called unconditionally. The call re-
mains valid until a new call is made.

The data block call can be programmed within a program block or
function block.

Example:

Transferring the contents of data word 1 of data block DB 10 to data
word 1 of data block DB 20 (Fig. 9).

If a program block in which a data block has already been addressed
calls a further program block and another data block is addressed in
this block, this data block is only valid in the program block called.
After control is returned to the calling program block, the old data
block becomes valid once more (Fig. 10).

Example:
Data block DB 10 is called in program block PB 7. The data in this
data block are then processed.

Afterthe call, program block PB 20 is processed. Data block DB 10is
still valid, however. The data area only changes when data block DB
11 is called. Data block DB 11 is now valid up to the end of program
block PB 20.

Data block DB 10 becomes valid again when the block changes
back to program block PB 7.

Note:

If a data load or transfer command is programmed with a data word
number > block length, this can lead to the controller entering an
undefined state.

Example:

Data block 10 isloaded with 10 data words, with the TDW 11 opera-
tion a memory word is overwritten outside the block (Fig. 11).

The processing of a data load or transfer operation without
previous data block call causes the controller to stop.

:C DB10 D8 10
DWo
;L DW1 Do
:C DB20
:T DW1
DW255
| — |
DB 20
DWo
DwW1

Fig.9 Calling a data block

PB 7 PB 20

C DB10

JU PB20 C DB11

BE BE
e —— e w—

Fig. 10 Calling a data block within another data block

0B 10
DWo
:C DB 10 bwi1
:L. KH 10
:T DW 11

N\ N —— .

Fig. 11 Fatal programming error

4. Function blocks
5.1 General
" 4.2 Structure

4.3 Calling function blocks for parameter assignment

4. Function blocks

4.1 General

Like program blocks, function blocks are part of the user program.
They differ in four main ways from program blocks:

Function blocks can be assigned parameters, i.e. the actual
operands with which a function block is to operate can be specified.

Function blocks can be programmed with an extended operation set
compared with program blocks.

The function block program can only be written and documented as
a statement list. '

A function block call is represented graphically as a black box.

A function block is a complex, complete functional entity within a
user program. It can either be obtained from Siemens as a software
product (Standard function blocks” on mini-diskette) or pro-
grammed by the user himself. The supplementary operations (see p.
20) can only be programmed in function blocks.

4.2 Structure
Afunction block consists of a block header and block body (Fig. 12).

Block header

The block header contains all the information required by the pro-
gramming unit for graphic representation of the function block and
for checking the operands when initialising the function block.
Before the function block is programmed, this block header is
entered by the user (with the aid of the programming unit) (see
"Generation of function blocks”, p. 9).

OB1
JU PB3

Jump
— A inserted
by PU

Parameter
list

Jump
inserted
by PU

Parameter
list

Fig. 13 Parameter assignment of a function block

Block header
I with information
for the programming unit

Block body with
the STEP 5 program

BE

o D—————————.

Fig. 12 Structure of a function block

Block body

The block body contains the actual program of the function block.
The function to be executed is described by the STEP 5
programming language and deposited in the block body. Only the
block body is processed when the function block is called. An
extended operation set (compared with the basic operations) is
available for programming function blocks (see ""Supplementary
operations”’, p. 35).

4.3 Calling function blocks for parameter
assignment

Repetitive or very complex functions are implemented by function
blocks (FB). They are present only once in the program memory and
are called once or several times by a superordinate block. These

function blocks can be assigned different parameters each time they
are called.

PB3 FBS
A =Xi1
A = X2
= X3
. BE
: JU FB5
NAME : EXAMPLE
U +4
X1 14.1
X2 F1.3
X3 Q0.1
'_1____. Actual parameter
A 152
:JC FBS
NAME : EXAMPLE
:JU +4
X1 14.5
X2 15.3
X3 Q0.2

8

4. Function blocks

4.4 Generation of function blocks

Like the program and data blocks, the function blocks are located in
the program memory under a certain designation (FB 1 to FB 47).
User function blocks should be addressed in descending order from
FB 47, so as not to collide with the standard function blocks which
have the addresses from FB 1 to FB 12.

A function block call can be written within a program block or
another function block. The call comprises the call statement and
the parameter list.

Call statement

JU FBn unconditional call
1C FBn conditional call

Unconditional call:

The function block addressed is processed regardless of the result
of the previous logic operation.

Conditional call:

The function block addressed is only processed if the result of the
previous logic operation “RLO" = 1.

Parameterlist

The parameter list is situated directly after the call statement (Fig.
13). The input and output variables and data are defined in it (see
"Block parameter type”’). The parameter list can contain a maximum
of 40 variables.

When processing the function block, the variables from the para-
meterlistare used instead of formal parameters. The sequence of the
variables in the parameter list is monitored by the programming unit.

The jump statement after the FB call is automatically inserted by the
programming unit, but not displayed when read out.

The FB call occupies two words in the program memory, and each
parameter a further memory word.

The memory requirements of the standard function blocks and their
runtimes are given in Catalog ST 56.

The qualifiers for inputs and outputs of the function blocks which
appear on the programming unit when programming, and the name
of the block are stored in the block itself. For this reason, all function
blocks required must be transferred to the program mini floppy disk
or entered directly into the program memory of the programmable
controller before starting to program with the programming unit.

4.4 Generation of function blocks

The function blocks are generated in two parts, corresponding to
the structure of a function block:

Entering a) the block header and b) the block body.
The block header must be entered before the block body (STEP 5
program). The block header contains:

the library number
the name of the function block

Formal operands (names of the block parameters)
Block parameter type
Block data type.

Library number

A number between 0 and 65535 can be specified. This number is
assigned to the function block, regardless of its symbolic or absolu-
te parameters.

A library number should only be specified once to enable a certain
function block to be uniquely identified. Standard function blocks
have a product number.

Function block name

The name given to the function block can be up to eight characters
long. Itis different from the system identifier.

Formal operand (name of the block parameter)

The formal operand can be up to four characters long and must start
with a letter.

A maximum of 40 parameters can be programmed for each function
block.

Block parameter type

“1”,Q", D", "B", "T" or "C" can be entered as block parameter
type.
| = Input parameter

Q = Output parameter
D = Data

B = Block

T = Timer

C = Counter

”l, D, B, T" or "C" are parameters which appear on the left of the
function symbol in graphic representation. "Q” parameters are
shown on the right of the function symbol in graphic representation.

Parameter assignment

Operations (substitution commands) which are to be assigned
parameters are programmed in the function block with formal
operands. The formal operands can be addressed several times in
different parts of the function block.

Example: Programin the function block
NAME : EXAMPLE

DES :ANNA 1/Q/D/B/T/C: [BI/BY/W/D: B
DES :BERT 1/Q/D/B/T/C: | BI/BY/W/D: BI
DES :HANS t/O/D/B/T/C: Ol (BI/BY/W/D: BI |

A =ANNA

A =BERT

:= =HANS

Formal operand Parameter type Data type

4. Function blocks
4.5 Standard function blocks

Function block call
STL LAD/CSF

:JU FB 202 FB 202
NAME : EXAMPLE

ANNA - 1 135 | 135 ==1 ANNA HANS

BERT : F o177 F 177 --t BERT
HANS : .Q 230 L. \ S S !

Formal operands

Formal operands

Block parameter type and data type with permitted actual parameters

Executed program

tA | 13.5
A F 177
1--Q 23.0 s = Q 23.0

—

Actual parameters

Type of Type of data Permitted actual parameters
parameter
l,Q BI for operands with bit addresses | n.m Inputs
Q nm Outputs
F nm Flags
BY for operands with byte addresses B n Input bytes
QB n Output bytes
FB n Flag bytes
DL n Data bytes left
DR n Data bytes right
PB n Peripheral bytes
W for operands with word addresses IW n Input words
AW n Output words
FW n Flag words
DW n Data words
PW n Peripheral words
D KM for a binary pattern (16 digits) Constants
KY for two byte-serial numbers in the range of 0 to 255 each
KH for a hexadecimal pattern (max. 4 characters
KS for a symbol (max. 2 alphanumeric characters)
KT for a time (in BCD code) with time base 1.0 to 999.3
KC for a count (BCD) 0 to 999
KF for a fixed-point number in the range from — 32768 to
+ 32767
B No data type permissible DB n Data blocks; the CDBn command is executed
FB n Function blocks (only permitted without parameters) are
called unconditionally (JU..n)
PB n Program blocks are called unconditionally (JU..n)
T No data type permissible T Timer; the time must be assigned parameters as data or
must be programmed as a constant in the function block
C No data type permissible C Counter; the counter must be assigned parameters as
g"ata kor must be programmed as a constant in the function
loc

4.5 Standard function blocks

The following constraints apply when using standard function
blocks from the ST56 Catalog with the 110S PC:

The FB30, FB35 and FB36 standard function blocks for the 333C
service unit cannot run on the 110S PC. The standard function block

specially developed for use with the 110S or 130W PCs must be
used.

The standard function blocks for sequence controls (FB70 — FB75) ‘

cannot be used on the 110S, as sequence blocks cannot be pro-
grammed on the 110S.

For message functions only the function blocks FB50 — FB56 can be
used for sending messages to the process peripherals. The FB64 —
FB69 function blocks for messages to the standard peripherals
cannot be used.

Supplying the standard interface (512C interface module) with
function blocks FB120 — FB129 is not possible. The interface
modules specially developed for the 110S and 130W PCs must
continue to be used.

For closed-loop control with the 110S PC a special software
package has been developed.

When using standard function blocks, care must be taken to load
blocks with numbers greater than 47 with a block number = 47, as
the 110S has a maximum capacity of only 47 function blocks (FB1 —
FB47).

10

5. Organisational tasks

5.1 General

5. Organisational tasks

5.1 General

The full program of a programmable controller consists of the
system program and the user program (Fig. 14). The system pro-
gram is made up of all statements and declarations concerning the
internal hardware operating functions (e.g. saving data when the
power fails). This program is an integral part of the programmable
controller (EPROM) and cannot be changed by the user. The user
program consists of all user-programmed statements and declara-
tions for the signal processing affecting the control of the system
(process) to be controlled. Organisation block 1 constitutes the
interface between the system program and the user program.

Like the program or function blocks, organisation block 1 (OB 1) is
also part of the user program. However, organisation block 1 is only
called by the system program. A user cannot call organisation
block 1. OB 1 controls cyclic processing of the user program.

A programmed reaction of the user to device errors and control of
the user program processing mode by further organisation blocks,
as is the case with the 150 A/K programmable controller, is not
possible.

User program processing mode

— Cyclic processing by programming OB 1 (see p. 12).

— Interrupt-driven processing by programming FBO (see p. 12 and
15).

— Time-controlled processing programmed directly in the user pro-
gram (see p. 5).

Cold restart andinitial start

Initiated by controls on the central processing module ('Run’ switch,
reset button).

— Cold restart-manual (see p. 18).

— Cold restart-manual with reset (see p. 18).

— Cold restart-automatic (see p. 18).

Handling device errors

Device errors bring the controller into the stop state.
— Memory errors

— Battery failure on cold restart

— Time-out

— Cycle time exceeded

Exception conditions

Exception conditions bring the controller into the stop state.
— Statement not decodable (p. 19).

llegal block (p. 19).

Data block not available (p. 19).

Block stack overflow (p. 19).

|

0oB1 PB FB
FB PB
L—_,'_J L T 4
System User program
program

OB 1 = Organisation block 1
PB = Program block
FB = Function block

Fig. 14 Entire program of programmable controller

"

5. Organisational tasks

5.2 Overview
5.3 Programming cyclic processing

5.2 Overview

Cold restart and initial start

Processing Name or processing Page Defined in Cold restart-manual 18
program Initiation opetratmg Cold restart-manual with reset
system
4 Cold refs'glart-automatic after
. .]
OB for cyclic processing powerfaflure
H . . . -
OB 1 Program start 12 andling device errors and exception conditions
Processing Name or processing Page
. . . program initiation
FB for interrupt-driven processing
Operating Memory error 19
Signal state change at 15 system Battery failure on cold restart
FBO 10.0 116.0 132.0 148.0 Time-out
10.1 116.1 132.1 1481 Cycle time exceeded
10.2 116.2 132.2 148.2 Statement not decodable
10.3 116.3 132.3 148.3 lllegal block
10.4 116.4 1324 1484 Data block not available
105 1165 1325 1485 Block stack overflow
10.6 116.6 132.6 148.6
10.7 116.7 132.7 148.7
Time-controlled processing
Defined in select (random) 5
user program time grid
5.3 Programming cyclic processing System program 081 PEn
' ® f
Cyclic processing is the “normal”’ processing mode for programma-
ble controllers (Fig. 15). The processor starts program processing at
the beginning of the STEP 5 program. It works its way through the
STEP 5 statements to the end of the program and starts processing
again from the beginning of the program.
5.3.1 Interface between the system program
and cyclic processing CallaPB r i i
Organisation block 1 is the interface between the system program Call OB 1 | | etc. I
and the cyclic processing of the user program. The first STEP 5 i H
statement in organisation block 1 is at the same time the first state- 1 |
ment of the user program, i.e. it is equivalent to the beginning of the i i
program. .
The program and function blocks of the cyclic program are called in
organisation block 1. Further block calls can be located in these
called-blocks, i.e. the blocks can be nested (see 1.3.2 “Program
organisation”, p. 4). ®
The user program runtime is made up of the sum of the runtimes of L [BE_ BE
. Vet s . . T
the blocks called. If a block is called "'n”’ times, its runtime must be
taken into account "'n”" times when working out the total. - T ! - T —
System program User program

The maximum cycle time is 270 ms.

(@ First statement of the STEP 5 program

@ First program block call. Further calls can be located in this block
.(see also "Program organisation”, p. 4).

® Return from the last program or function block processed.
@ The organisation block is terminated with the ‘BE’ statement.
® Return to the system program.

Fig. 15 Cyclic program processing

12

5. Organisational tasks

5.3 Programming cyclic processing

5.3.2 Rough organisation of the program

Organisation block OB 1 contains a rough arrangement of the user
program. The documentation of this block is meant to illustrate the
main program structures at a glance (Fig. 16) and their relationship
to the process technology (Fig. 17).

0B1 PB"A” FB
Operating / System stop,
mode Emgergency
program \
Ju PB"A” B
/ Return to the
\ initial state
PB"B” FB FB
Sequence gontrol of / gféq;ence
control e
sequence ~~
cascade .
Ju PB”B” .
FB .
/ Sequence
\ Step
PB'C” FB DB
Individual / G"OUIP }rten‘?ce
control . supply ag o
level \ the
' individual
FB control
/ Individual elements
Ju pB"C” \ supply
FB -
/ Individual
\ supply |
PB'D” FB
Message Message
output output via
process
\ peripherals
Ju PB"D”
FB DB
Message Message
output via texts
standard
\ peripherals
BE :

Fig.16 Organisation of the user program according to the program structure

13

5. Organisational tasks

5.3 Programming cyclic processing

OBt PB"X” FB DB
System Individual
section X"’ control -
\ DB
Jju - PB"X"”
FB DB
/ Signalling
PBHY" FB
System / Sequence
section "'Y"” \ control
Ju PB"Y”
FB DB
< Signalling
PB"z" FB
System Arithmetic
section 2"
. DB
W PBUZ \
FB
/ Listing
BE \

Fig. 17 Organisation of the user program according to process structure

14

5. Organisational tasks

5.4 Programming of interrupt-driven processing

5.4 Programming of interrupt-driven processing
(servicing a process interrupt)

Interrupt-driven processing can be implemented with the $5-110S
programmable controller. Such processing occurs when a signal
from the process causes the processor to interrupt cyclic pro-
cessing and process a specific programto service the interrupt. After
processing this program, the processor returns to the breakpoint in
the cyclic program and continues normal processing (see Fig. 19
and 20).

Interface between the system program

andinterrupt-driven processing

Function block 0 (FB 0) forms the interface between the system
program and interrupt-driven processing. With FB 0 the user
evaluates the edge change of the interrupt input bytes 0, 16, 32 and
48.

The output bytes 0, 16, 32 and 48 of the 110 peripherals are reserved
for reaction to interrupts in the output modules. Minimal reaction
time is only assured if these inputs/outputs are used.

Reactiontime

When a module is being processed, no interrupt can be processed,
i.e. an interrupt is only processed when a block is called or ended.
This means that the maximum reaction time between the occurrence
of an interrupt and its being processed corresponds to the pro-
cessing time of a block, plus interrupt input transfer times and the
user program’s reaction time to interrupts at the outputs (< 2 ms.)

In order to keep the transfer times of the interruptinputs and outputs
of the 110 peripherals to a minimum, the following must be ob-
served:

1. The interrupt input modules of the 110 peripherals must be
plugged into locations 0, 16, 32 or 48.

2. The user references the interrupt outputs 0, 16, 32 or 48 on reac-
ting to interrupts in FBO.

3. Interrupt inputs and outputs are addressed in FBO with the LPB,
LPW, TPB and TPW load and transfer statements.

Further block calls in FBO delay interrupt reaction time on the inter-
rupt output side.

User program Interrupt inputs Interrupt reaction 081 a3 FB 5
FBO 10.0/16.0/32.0/48.0 Q0.0/16.0/32.0/48.0

10.1/16.1/32.1/48.1 Q0.1/16.1/32.1/48.1

10.2/16.2/32.2/48.2 Q0.2/16.2/32.2/48.2 i

10.3/16.3/32.3/48.3 Q0.3/16.3/32.3/48.3 U FBS

10.4/16.4/32.4/48.4 Q0.4/16.4/32.4/48.4

10.5/16.5/32.5/48.5 Q0.5/16.5/32.5/48.5

10.6/16.6/32.6/48.6 Q0.6/16.6/32.6/48.6 'BE

10.7/16.7/32.7/48.7 Q0.7/16.7/32.7/48.7 S

U PB3
PB 13
Breakpoints .
The cyclic program cannot be interrupted by an interrupt at every
point in the processing cycle. This is only possible between blocks U PBIs
(Fig. 18). The system program can only call function block FB O for
interrupt-driven processing when it is changing from one block to BE BE BE
another — e.g. when calling a new block or retuming to a superordi-
—.—

nate block following a block termination operation.

Assigning priorities to processinterrupts

The user stipulates in FBO the priority of the interrupts if changes in
signal states occur simultaneously.

Breakpoints at which an interrupt can be serviced.

Fig. 18 Breakpoints in the cyclic program

15

5. Organisational tasks

5.4 Programming of interrupt-driven processing

Example: Interrupt-driven processing

Legend to Figs. 19 and 20

(@ Start of cyclic processing. The system program calls organi-
sation block OB 1.

@ Aninterrupt occurs atinput | 0.3, the signal state of which chan-
ges from 0" to ""1".

® Block change. The signal state at input | 0.3 is registered and
evaluated. Processing of the cyclic program is interrupted.

@ The system program calls function block FB 0. The program of
this function block is processed until the BE statement (block
end) is reached. The processor then returns to cyclic program
processing.

® Asthere is no further interrupt, processing of the cyclic program
continues from the point of interruption.

® Aninterrupt occurs at input | 0.6, the signal state of which chan-
ges from 0" to ""1".

@ Aninterrupt occurs atinput | 0.0, the signal state of which chan-
ges from 0" to 1"

Block change. The change of signal states at inputs | 0.6 and
| 0.0 are registered. Processing of the cyclic program is inter-
rupted.

® The system program calls function block FB 0. Here the change
of signal states at inputs | 0.6 and | 0.0 are evaluated.

@ Aninterrupt occurs atinput | 0.4, the signal state of which chan-
ges from 0" to ""1".

@ The change of signal state atinput ! 0.4 is registered. Cyclic pro-
gram processing remains interrupted.

@ The system program again calls function block FB 0. In FB 0 the
change of signal state atinput | 0.4 is evaluated.

® As there is no furtherinterrupt, processing of the cyclic program
continues from the point of interruption.

Disabling interrupt-driven processing

An interrupt-driven program is “inserted” into the cyclic program at
a block boundary. The cyclic program is interrupted at this point.
This can be disadvantageous if a cyclic program has to be pro-
cessed within a certain time to achieve, for example, a certain reac-
tion time.

If a program section is not to be interrupted by interrupt-driven pro-
cessing, the following possibilities are available:

The program contains no block changes, and cannot therefore be
interrupted.

The program ifself is within an interrupt-driven program. Even on
block change it cannot be interrupted by a further interrupt.

The | A ""Disable interrupt” operation can be programmed. This can
be revoked with the RA ("'reset interrupt”) (only possible in function
blocks: see ""Supplementary operations”, p. 38). Between the | A

and R A operations no interrupt-driven processing is possible (time-
controlled processing is not inhibited, however.).

081 PB 51 FB 37

U PBS51 JU FB37 @

Ay

/@\.
o

BE BE BE
FBO FBO
\ BE \ BE
EBO For legend, see left
®/ l Fig. 19 Interrupt-driven processing with
several interrupts
ole
Cyclic
pro-
cessing 081 081
PB51 PB51
FB37
HEe| OO ®
—I‘;l;r-rupT—-_- '_ T
nven
processing (@) ®
FBO FBO
M For legend, see left

O

Fig. 20 Processing sequence of the blocks in the above example

Starting interrupt-driven processing

Input modules of the 110 peripherals with group interrupt are used
to input interrupt signals. These input modules should be plugged
into locations 0 and/or 16/32/48.

Programming function block 0

When an interrupt occurs, function block 0 is called. The user must
scan the individual inputs in this block and perform the necessary
logic operations. The results of the logic operations at the outputs
must be transfered to output modules 0 and/or 16/32/48 (STEP 5
operations TPB/TPW). N

If further blocks are called in FBO, the reaction to the interrupt at out-
puts 0/16/32/48 is delayed.

In order to be able to detect short interrupt pulses (e.g. counting
pulses), the interrupt inputs should be examined at definite intervals
by the interrupt service program (FBO) for pulse edge changes. This
can be achieved with the following statement sequence, for example
(see p. 17):

16

5. Organisational tasks

5.4 Programming of interrupt-driven processing

Example: Registering interrupt pulsesin FB O interrupt block

Comments

Scanning of peripheral
inputs 0.0 to 0.7 for edge
changes. If an input has an
edge change, a branch is
made to the respective
label.

Repeat scan of peripheral
inputs 0.0 to 0.7 for edge
changes.

If, on repeated scanning of
the peripheral inputs, an
edge change becomes
apparent, a branch is made
back to the beginning

of FBO

Processing of edge change

Statements Explanation
L bB Load current peripheral byte into accu 1
T FB 2 | Contents of accu 1 are transferred to flag byte 2 (current PB 0)
Flag byte 1 (old PB 0) is loaded into accu 1.
L FB 1 | The contents of accu 1 (current PB 0) transferred to accu 2
Bit pattern of accu 1 is compared with that of accu 2
:XOW and the result stored in accu 1
T FB 0 | Contents of accu 1 (result) are transferred to flag byte 0
L FB 2 | Load flag byte 2 (current PB 0) into accu 1
T FB 1 | Transfer contents of accu 1 (current PB 0) to flag byte 1
T B 0 | Transfer contents of accu 1 (current PB 0) to the process image of input byte 0
A F 0.0 | Scan flag bit 0 of flag byte 0 forlog "1” .
JC =00 If flag bit 0.0 is log “1"" (RLO = 1), a jump is made to label | 0 0
A 0.1 | Scan flag bit 0.1 of flag byte 0 forlog 1"
JC =101 If flag bit 0.1is log "1 (RLO = 1), a jump is made to label | 01)
Processing of flag byte 0
JC =107 see above
Processing of further interrupt-driven statements
L PB 0 | Load current peripheral byte 0 into accu 1
T FB Contents of accu 1 (current PB 0) are transferred to flag byte 2
Flag byte 1 (old PB 0) is loaded into accu 1:
:L FB 1| Contents of accu 1 (current PB 0) shifted to accu 2
Bit pattern of accu 1 compared with that of accu 2
XOW and the result stored in accu 1.
T FB Contents of accu 1 (result) transferred to flag byte 3
FB Load flag byte 2 (current PB 0) into accu 1
FB Transfer contents of accu 1 (current PB 0) into flag byte 1
Processing of further interrupt-driven statements
L FB 3 | Load flag byte 3 (result) into accu 1
T FB Contents of accu 1 (result) are transferred to flag byte 0
Fixed-point constant 0 is loaded into accu 1:
:L KF 0 | contents of accu 1 (result) shifted into accu 2
Accu 1 compared with accu 1, if equal;
I=F RLO =1/ifnot, RLO=0
= F 4.0 | If accus are equal (RLO = 1) flag 4.0 is set
:AN 4.0 | Scan flag bit 4.0 for log 0"
If flag bit 4.0 is log ’0” (RLO = 1),
JC FB a jump is made to the beginning of function block 0
KF Fixed-point constant 0 is loaded into accu 1
T FB Contents of accu 1 (fixed-point constant 0) are transferred to flag byte 3
Processing of further interrupt-driven statements
100 :.... Processing of statements if flag bit 0.0 is set
107 :.... Processing of statements if flag bit 0.7 is set
:BE End of program

17

5. Organisational tasks

5.4 Programming of interrupt-driven processing
5.5 Start-up and restart procedure

Example of interrupt processing

Exact positioning with a limit switch
Functional description:

An outputis switched on via aninterlock condition | 1.0 or12.0 and is
switched off again with a short, constant delay when a limit switch
| 0.0 has been operated (Fig. 21).

Programming:

The setting condition for the output is programmed in program block
2.

The reset input is assigned to interrupt input | 0.0. FB O is called
according to the setting on the input module with group interrupt 0
with positive-going or negative-going edge of the signal on input
0.0. Only one input | 0.0 is connected to input byte 0.

Programming FB 0:

In order to scan the status of input 0.0, the input image of byte 0"
must first be updated. This is done with the operation LPB and TIB. If
these is a negative-going edge at interruptinput | 0.0 and if output Q
16.0 is reset, the output is transferred directly to the output module.
This is done by the LQB and TPB operations. When transferring to
peripheral bytes 0 to 63, the output process image is automatically
updated.

Interrupt
i

nput Programming:
1700 1.0 2.0 2.0 1.0

FBO PB2

:L PB 0 :A | 1.0
T B 0 :AN | 2.0
:AN | 00 :O

:R Q 16.0:A | 20
L QB16 :AN | 1.0
:T PB 16 :S Q16.0

Q1.60

Fig. 21 Example of interrupt processing

5.5 Start-up and restart procedure

The system program differentiates between three different start and
restart modes for the programmable controller:

- manual restart
- restart with reset
- automatic restart

The type of restart is controlled by the operating system and the user
can only influence this by means of the “Reset” button.

Manual restart

A restart is initiated manually by moving the “Stop’’ switch on the
CPU from the "Stop’’ position to the “Run”’ position.

The system program then executes the following:

- resets the non-retentive flags (F 128.0 — F 255.7)

- loads the input process image

- erases the output process image

- resets all peripheral outputs

establishes the block address list

[l

Manual restart with reset

A restart with reset is initiated manually by pressing the "“Reset”
button and simultaneously moving the stop switch on the CPU from
the "Stop"’ position to the “Run’’ position.

The system program then executes the following:
- erases all current timer values
- erases all current counter values

- resets all flags

1

loads the input process image

- erases the output process image

resets all peripheral outputs
- establishes the block address list

Automatic restart

The programmable controller tries to execute an automatic restart
when the power returns after a power failure. The function of the
automatic restart is identical to that of the manual.

If the user does not wish to have an automatic restart on return of
power after a power failure he can check a non-retentive flag at the
beginning of OB 1 and bring the system into the stop state with the
STEP 5 operation "STP"".

18

5. Organisational tasks

5.6 Evaluation of device errors and exception conditions

5.6 Evaluation of device errors
and exception conditions

The system program is capable of detecting maloperation of the
central processor, errors in the system program or the effects of
incorrect programming by the user. With some of these errors,
proper operation of the central processor is no longer guaranteed.
The programmable controller then stops.

The reaction to device errors and exception conditions is defined in
the system. The following events are evaluated:

Memory error

Battery failure (on restart)
Time-out when accessing memory
Cycle time exceeded

Statement not decodable

llegal block

Non-existent data block

Block stack overflow.

Memory error

In the event of a restart the system program recognises wrongly
addressed user memory submodules and stops (erroneous jumper
assignment).

In addition, the operating system is checked at each restart. If an
error is recognised by the operating system, the PC stops.

- If the "Compress memory” function (implemented by the PC for the
programming unit) is interrupted by a power failure, for example, the
PC stops.

Battery failure
If the battery fails on restart (battery voltage below minimum per-

missible level), the PC stops.
Time-out

A time-out occurs when a non-existent memory area is addressed.
The cause of the time-out can be a fault in the module or the removal
of the module during operation of the programmable controller.

Cycle time exceeded

The cycle time consists of the total processing time of a cyclic pro-
gram. Included in this are the calling and processing of organisation
block 1 and the program and function blocks called in this organi-
sation block, with nesting, as well as all the interrupt-driven and
timer-driven program sections processed in this cycle.

The cyclic program terminates with a “Block end” statement in
organisation block 1 (OB 1). If the processing time exceeds a certain
length (the ”'Cycle time’’ preset in the processor), the system pro-
gram recognises a "'Cycle time exceeded’ error.

This can be caused, for example, by incorrect programming when,
under certain process conditions, the processor runs in a program
loop or on failure of the system clock.

If the cycle time is exceeded, the system program interrupts the
STEP 5 program and stops.

Statement not decodable

If the PC processes a STEP 5 statement whichis not part of the set of
the SIMATIC S5—110S programmable controller, it stops.

lllegal block

If there is a block call statement in the user program which has a
block number higher than the maximum permitted for the PC (127
with PBs, 63 with DBs and 47 with FBs), the controller stops when
processing the statement.

Non-existent data block

If a data-word load or transfer statement is processed in the user
program without a matching data block having previously been
called (address range assignment for DB is missing), the PC stops.

Block stack overflow

If more than 7 blocks are called in arow in the user program without a
BE statement being run through, the maximum block nesting depth
of 8 is exceeded and the PC stops.

19

6. Programming examples

6.1 Basic operations (program and data blocks)
6.1.1 Binary logic functions

6. Programming examples
6.1 Basic operations (Program and data blocks)

6.1.1 Binary logic functions

AND logic
Original STEP 5 representation
' IStaten’\ent . Ladder diagram Control system flowchart
ist
—— Al 1l 111113 117 Q35 111
1111317 Al 13 —— :
| [] Al 17 1.3
113 = Q35 1.7 Q35

;)

i 17
Q3s é 35

)

A""1” signal appears at output Q 3.5 when allinputs have "’1" signals
simultaneously.

A"'0" signal appears at output Q 3.5 if at least one of the inputs has a
0" signal.

There are no restrictions imposed on the number of scans and the
programming sequence.

OR logic
Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
1121715 ol 12 11.2 Q32 11.2
ol }g | 1.7
z1 ° los:z N 115 Q32
11.5
|
Q32

A""1" signal appears at output Q 3.2 if at least one of the inputs has a
1" signal. '

A "'0" signal appears at output Q 3.2 if all the inputs have "'0” signals
simultaneously.

There are no restrictions imposed on the number of scans and the
programming sequence.

20

6. Programming examples

6.1 Basic operations
6.1.1 Binary logic functions

AND before OR logic

Original) STEP 5 representation
Statement Ladder diagram Control system flowchart
list
115116114113 A1 15 115 116 Q3.1
Al 18 ',11' “
115 11.4 AO |14 114 113 :
& & Al 13 :
116 11.3 11:4
= Q31 113 H Q3.1
21 31

A""1" signal appears at output Q 3.1 when the output of at least one
of the AND gatesis "'1".

A0 signal appears at output Q 3.1 when neither of the AND gates

has a 1" at its output.
OR before AND logic
Original STEP 5 representation
Ftatement Ladder diagram Control system flowchart
ist
160161162163 160162163 O 160 1

' ’ ‘ o 6.0 Q21
ﬁ(i 61 162 16.
818 J
\ 16.3
O ;

Q21 Q2.1

A "1"” signal appears at output Q 2.1 when input | 6.0 or input 1 6.1
and one of the inputs 1 6.2 or1 6.3 have a 1" signal.

A 0" signal appears at output Q 2.1 when input | 6.0 has a "0’
signal and the AND gate has a “0" at its output.

21

6. Programming examples

6.1 Basic operations
6.1.1 Binary logic functions

OR before AND logic

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list

114115 120121 A(114 120

_?‘_1_4__.___1__ o1 14 1412 Q3.0
. 115
)O 15 11.5{ 121
21 21 A(
Ol 20
12.0 12.1 Ol 21 Q30
)
= Q30
Q3.0
Q3.0

A’’1” signal appears at output Q 3.0 when both OR gates have "'1”
signals at their outputs.

A ”’0” signal appears at output Q 3.0 when at least one of the OR
gates has a ’0” signal at its output.

Scanning for 0" signal status

Original STEP 5 representation
|Statement Ladder diagram Control system flowchart
ist

115116 A1 15 115 116 Q3.0
ANI 16 B 15
= Q30 116 30

&
Q3.0

A ”"1"” signal only appears at output Q 3.0 when input 1.5 has 1"’
signal, and the input | 1.6 has "’0"’ signal.

22

6. Programming examples

6.1.Basic operations
6.1.2 Setting/resetting functions

6.1.2 Setting/resetting functions

RS flip-flop for stored signal output

Original STEP 5 representation

|$tatement Ladder diagram Control system flowchart

ist

—_— : é bgg 12.7 Q3.5 Q35
. 7
114 \127 A3 12 l
R Q35 114 11.4 Q]
NOP 0
Q3.5

The flip-flop is set when a 1" signal is applied to input | 2.7. If the signal at input | 1.4 changes to "’0” this status is still retained.
If the signal at input | 2.7 changes to “0”, the status remains un- The last program scanning operation (in this case A | 4.4) is effective
changed, i.e. the signal is stored. during the processing of the remaining program, if a set signal (input
The flip-flop is reset when a 1" signal is applied to | 1.4. 12.7), and a reset signal (input | 1.4) are simultaneously applied.
RS flip-flop with flags
Original STEP 5 representation

'Statement Ladder diagram Control system flowchart

ist
113126 Al 26 126 F17 F1.7

2 |F 1; I 2.6

1.

R F17 ”5 Q34 11.34R of- Q34

AF17 | HHO---- ~

= Q34
The flip-flop is set when a "1 signal is applied to input | 2.6. If the signal atinput | 1.3 changes to “0”, this status is still retained.
If signal atinput | 2.6 changes to “0", the status remains unchanged, The last program scanning operation (in this case A | 1.3) is effective
i. e. the signal is stored. during the processing of the remaining program, if a set signal (input
The flip-flop is reset when a *1”" signal is applied to reset input | 1.3. 12.6) and a reset signal (I 1.3) are simultaneously applied.

23

6. Programming examples

6.1.Basic operations
6.1.2 Setting/resetting functions

‘Implementation of an impulse contact

Original STEP 5 representation
lStatement Ladder diagram Control system flowchart
ist
1.7 QNP] 117 F40 F20 7
: 4.0 . F20 E40
wede | BRI s
V {F4a0 A F20] /1 7
INE S F40 .
J:L _\, F2.0 ANI 1.7
F2.0 R F4.0
NOPO
The AND logic (Al 1.7 and AN F 4.0) is fulfilled at each positive-going Flag F 2.0is reset. This means that flag F 2.0 only has a "1" signal for
edge of the signal atinput | 1.7 and flags F 4.0 and F 2.0 ("’pulse edge one program cycle.

flags") are set if the result of the logic operationis 1",

The AND logic A1 1.7 and AN F 4.0 is no longer fulfilled at the next
program pass, as flag F 4.0 is set.

Binary scaler
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist .
Al 10
|1Io ANF 1.0 110 E10 F11 ';’- ”~0-11 F10
V IF10 A E H H 3/ #)— F1.149 # S
n s 1.0 S F10 ”/'0 S
e P
- NOP 0
: Q3.0 AF 11 F11 Q30 F20 222 me a3.0
L 20 A 030 H H & Q30 #7
= F2 F11
cE3 | el T
R A 30 - S Q F2.09 S Q
el OAONN R 3 "~
ANF 2.0
SO s N B 50830
Q30 NOP 0

The output of the binary scaler (output Q 3.0) changes its state at
each positive-going edge of the signal at input | 1.0, i.e. when input
1 1.0 changes from a 0" to a "”1”. Thus, half the input frequency
appears at the binary scaler output.

24

6. Programming examples

6.1 Basic operations
6.1.3 Loading and transfer functions

6.1.3 Loading and transfer functions

Loading a timer value

Original STEP 5 representation
?tatement Ladder diagram Control system flowchart
ist
| 50 15.0 10 110
T10 w22 1 —4n
RN SPT 10 150
\Ioad L 7T1 W 22— TW oul—aweo w2—T™w oul— aweo
\' DEf— DE }—
[:]Accm —R af— —r of—
- /‘/transfer
Qw60 il
The contents of the memory location addressed by the T10 state-
ment are loaded into accumulator 1.
Transferring
Original STEP 5 representation
?tatement Ladder diagram Control system flowchart
ist
t\ I 50 15.0 110 710
W 22 - :
e N SPT 10 1 v 150—{1
\ load % E}V\}gO w22 —TW 32 w60 W 22— TW oul—aweo
Accu 1 —R oF— —r Q
) transfer
Qw60

The contents of accumulator 1 are transferred into the process
image addressed by the QW 60 statement. Transfer of time T 10 to
QW 60 is in binary in this example.

25

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

6.1.4 Timer functions

Pulse
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist
130 AL B0 130 11 I
T10. :
L_+ SPT 1 —3 Hmn 30—
< AT
L =
10s Q40 KT10.2 — TW DUp— KT102— TW DUp—
1L 1y
DEf— DE—
Q4.0 | Q40
] Q H R af—aq40

The timer is started during the first processing cycle if the result of
the logic operationis "’1". The timer remains unchanged during sub-
sequent processing, resulting in a 1"’ signal.

The timer is set to zero (reset) when the result of the logic operation
is"0".
The ATorOTscansresultisa’” 1" signal aslong as the time is running.

13.0,

Qa0f A
- T e

KT 10.22 10-1s = 10s

The timer is loaded with the specified value (10). The number to the
right of the point indicates the time base:

02001s 22 1s

1201 s 3210s

Outputs DU and DE are digital. The timer value is in binary code at
output DU and in BCD code at output DE.

Extended pulse
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist
13.1 ﬁ :W351 13.1 12 12
‘ SeT 2 1 131y
AT2
RS = a4 W 15— Tw ouf— w 15— Tw ouf—
[E1% 7]
DEp— DEp—
Q4.1
Q41 _{R o H —r 0}—Q41

The timer is started during the first processing cycle if the result of
the logic operation is “'1".

The timer remains unchanged if the result of the logic operation is
gy, .

The AT or OT scans result in-a 1" signal as long as the time is run-
ning. '

Byte 15 Byte 16
134 M
Q4 L - [xIxT1T+]ololo[1]olo|1{o]ol1|1{1]
D e i i Qe o

3 127

g;r;ee time value

Set the time value with the BCD-value of the operands |, Q, F or D
(input word IW 15 in the above example).

IW 15:

In the above example the time T of the extended pulse is 1270's, con-
trolled by input word 15 (IW 15).

EW 152 127-10s = 1270 s

Time base
020.01s 22 1s
1201 s 3210s

26

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

”On" delay timer

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
135 Al 35 13 13
: L KT9.2 133
135 SRT 3' T—0 135 T—0
A T3
RS : = Q42 kT 92— TW oup— k192 —Tw oul—
9 0
— §73
DEp— DE}—
Q4.2
Q4.2 —] Q.—-()_. —R QF—Q42
The timer is started during the first processing cycle if the result of 135 1L
the logic operation is /1. The time remains unchanged during sub- 04%},_{:_
T

sequent processing if the result of the logic operation remains 1.
The timer is set to zero (reset) if the result of the logic opefation is
Q.

The AT or OT scans result in a 1" signal when the time has elapsed
and the result of the logic operation is still present at the input.

KT 9.2:

Load the timer with the specified value (9).

The number to the right of the point indicates the time base
02001s 22 1s

1201 s 3210s

"Off'’ delay
Original STEP 5 representation
lStatement ’ Ladder diagram Control system flowchart
ist
13.4 ANl 34) 15 5
L FW13 134
SET 5 %/ 0T 1344 0—T
S |
- 13.4 - 4 misHw o wis—w ol
T5
- DE p—
- ot
[~ Jqaas Qa4
Q4.4 — o H —‘R' 0f—Q44

The timer is started during the first processing cycle if the result of
the logic operationis “’0". The timer remains unchanged during sub-
sequent processing if the result of the logic operation remains "“0"'.

The timer is set to zero (reset) when the result of the logic operation
is 1",

The AT or OT scans resultina’’1” signal when the timer is running or
the result of the logic operation is still present at the input.

Byte 13 Byte 14
a1 :
Q44
STLTE e [X[x[1]ofo[o]o[o]olo[+]o]ofo[1]
2 0 2 3
time 23
base time value

Set the time value with the BCD value of the operand |, Q, For D (flag
word FW 13 in the above example).

FW 13:

In the above example, the time T of the “off’ delay is 23 s; and is
determined by flag word 13 (FW 13).

FW13223-1s=23s
- Time base

02001s 22 1s

12 01s 3210s

27

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

Stored "On" delay
Original STEP 5 representation
lStatement Ladder diagram Control system flowchart
Ist
132133 Al 33 133 14 74
ES$W%1 -—.3 E—‘ T—is 13.3— T+——is
Al 32
2'25 s ﬁ ¥ 2 pwa—f TW DUt— ow 21— TW DU—
i By = Q 43
DEH— DE f—
13.2 Q43
Q43 L 4w ot H 13.2—R al—a43
The timer is started during the first processing cycle if the result of Set the time value with the BCD value of the operands |, Q, For D
the logic operationis ’1"". (DW 21 in the above example).
The timer remains unchanged if the result of the logic operation (" In the above example the time T of the 'on” delayis 3 s, and is deter-
The AT or OT scans resultin a ‘1" signal when the time has elapsed. mined by data word 21 (DW 21)
. . Ay . e
The signal status only changes to ""0” when the timer is reset by the DW21 2300 0.01s=3s
RT function. Time base
Byte 21 Byte 22 02001s 22 1s
Neunn M o ——— — 12 01s 3210s
.y T ~ IxIxfojololol1]1{olololo]ololojo!
AR pa i s B o V5 4 LLU’J 1folofojofojolo]
0 3 0
time 300
base time value

28

6. Programming examples

6.1 Basic operations
6.1.5 Counter functions

6.1.5 Counter functions

Set counter
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist
Al 41 21 Z1
14.11W20 L w20
| S C1 — i
R S ZE :
—r —r
I 14.1
— g 141—{8
[1E)
- lbinary Zw bub— IW 20 —{ZwW DUf—
ZA $16b IW 20— u
DEf— DEf—
—r ol — —lﬁ Q
The counter is set during the first processing cycle if the result of the Byte 20 Byte 21
logic operation is "’1". The counter remains unchanged during sub-
sequent processing (no matter whether the result of the logic opera- wao: Xx[x[x]o[o[1]1]1]o]o]1 [o]1]o]o]
s g 1y % . S . [— i ——_ S——
tionis 1" or "0"). The counter is set again (pulse edge evaluation) 3 9 2
at the next first processing cycle if the result of the logic operation 394

is""1”.
The flag necessary for pulse edge evaluation of the set input is in-

cluded in the counter word. The counter word can be IW, OW, FW,
DW.

In these counter words, the counter value of the counter is specified.
The countervalue is given in 16 bit BCD code, whereby the first 4 bits
of the counter are not processed.

In the above example the initial value of the counter is 394. Outputs
DU and DE are digital.

The counter value is in binary code at output DU and in BCD code at
output DE.

Reset counter
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist
142 A IC 42 Z1 21
] R 1 _
339 3 T
RS ZE =) . |
T ZR ZR
8 —S —S
o bir A bu W bu
inary — — — -
#0 ZA 16b
l I DE— oE}—
42 Q24
Q24 —-5 R Q 142—R ol Q24

The counteris reset when the result of the logic operationis “1". The
counter remains unchanged even if the result of the logic operation
becomes 0.

29

6. Programming examples

6.1 Basic operations

6.1.5 Counter functions
Counting up
Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
ist
1 8.11W20 éUIC 4.1 141 21 Z1
1 .
NOP 0 — e i
R S ZE A |l 51
1 n L W20 15T IR .
141—+ 20301 H s 151—s
o R IES s L
A § 6o OF [— OEF—
Q60 ’ Q6.0
{ . o~ M —R al-Qs60

The value of the addressed counter is only incremented by 1 if the
CU input of the counter shows an edge-change from ’0” to 1"’ The
flags necessary for pulse edge evaluation of the counter inputs are
included in the counter word.

A ¢ounter with two different inputs can be used as an up/down

counter by means of the two separate pulse-edge flags for CU and
CD.

The Q output of the counter remains "1’ as long as the actual count
is>0.

Counting down

Original STEP 5 representation
Est?tement Ladder diagram Control system flowchart

15.0 DW 10 éDIC 11&0 140 21 71

NOP 0 — = 14.0—z
Lowie | | e n &

14.0—— ﬁ |C 25.0 — s 1505

‘ binary EOEO 1 pw 10{zw ouj— DW 10— 2w ouj—
R‘Ogo 1 160 I O 100 o
F10.0 = F 100 -ﬂ E ik Q __()_ I 6.0—R Q—F100

The value of the addressed counter is only decremented by 1 if the
CD input of the counter shows an edge-change from“0" to “’1”’. The
flags necessary for pulse edge evaluation of the counter inputs are
included in the counter word.

A counter with two different inputs can be used as an up/down

counter by means of the two separate pulse-edge flags for CU and
CD.

The Q output of the counter remains ’1” as long as the actual count
is > 0.

30

6. Programming examples

6.1 Basic operations
6.1.6 Comparison funetions

6.1.6 Comparison functions

Comparing for equal to

Original STEP 5 representation
IStatement Ladder diagram Control system flowchart
Ist

B19 1820 t :818 PO :
I=F B2 1B19—{21 F

Z1 22 = Q 30 =
1=
= Q3o 1B20—]22 a}—-a3o0
1B20—]22 Q
Q3.0

The first operand specified is compared with the subsequent
operand according to the comparison function. The result of the
comparison is shown by the CC0 and CC1 condition codes.

The numerical representation of operands (fixed-point arithmetic) is
taken into account.

After comparing for equal to, a jump can be made withthe JZ = ...
function (if the RLO = 1) to a “label” (£ 127 words).

for cCt CCo RLO
IB19=1B20 0 0
IB19 <IB20 0 1
IB19>1B20 1 0

Comparing for not equal to

Original STEP 5 representation
I‘g"tatement Ladder diagram Control system flowchart
ist
1B21 1B 22 L I1B21
L I1B22 - 1B21—21 F
S<F 1B21—21 F
2 72 = Q31 ><
> Q31
1B22—j22 af—Q31
1B 22—{z2 o«
=
Q3.1

The first operand specified is compared with the subsequent ope-
rand according to the comparison function. The result of the com-

parison is shown by the CC0 and CC1 condition codes.

taken into account.

The numerical representation of operands (fixed-point arithmetic) is

After comparing for not equal to, a jump can be made with the
IN = ... function (if the RLO = 1) to a “label” (£ 127 words).

for CC1 CCo RLO
1B21 =1B22 0 0
IB21 < 1B 22 0 1 1
1B21>1B22 1 0 1

31

6. Programming examples

6.1 Basic operations
6.1.6 Comparison functions

Comparing for greater than

Original STEP 5 representation
lStatement Ladder diagram Control system flowchart
ist
1B23 1B24 L IB23
J | L IB24 | 1823 4, F
S F B 23— F
1 22 = O 32 >
= i
= Q32 1824 _] Q32
< 1B 24 ol 2 0
> <

—q

ads -

The first operand specified 'is compared with the subsequent
operand according to the comparison function. The result of the
comparison is shown by the CC0 and CC1 condition codes.

The numerical representation of operands (fixed-point arithmetic) is
taken into account.

After comparing for greater than, a jump can be made with the

JP = ... function (if the RLO = 1) to a "label” (+ 127 words).
for CcCit CCo RLO
IB23=1B24 0 0 0
1B23 < IB24 0 1 0
1B23 > IB 24 1 0 1
Comparing for less than
Original STEP 5 representation
'Statement Ladder diagram Control system flowchart
ist
1B 27 1B 28 L IB27 B27
i ::B 28 B 27— . — F
21 72 = Q34 <
2 Q34 1B28
< 1828 _(—422 Q Q34

The first operand specified is compared with the subsequent
operand according to the comparison function. The result of the
comparison is shown by the CC0 and CC1 condition codes.

for ccC1 CcCo RLO
1B27 =1B28 0 0 0
IB27<1B28 0 1 . 1
IB27 > 1B 28 1 0 0

The numerical representation of operands (fixed point arithmetic) is
taken into account.

After comparing for less than, a jump can be made withthe IM = ...
function (if the RLO = 1) to a “label”’ (+ 127 words).

32

6. Programming examples

6.1 Basic operations
6.1.6 Comparison functions

Comparing for greater than or equal to

Original STEP 5 representation
'$ttatement Ladder diagram Control system flowchart
is
. IB25 1B 26 L IB25 !
L IB26 1B25—j171 F
>=F 1B25 F
1 22 = Q33 .
= Q33
< : IB26—j72 (o] ==
1B 26— o« ass3
> = <
Q33

The first operand specified is compared with the subsequent
operand according to the comparison function. The result of the
comparison is shown by the CC0 and CC1 condition codes.

for CC1 cco RLO
IB25 = 1B 26 0 0 1
IB25<1B26 0 1 0]
1B25>1B26 1 0 1

Comparing for less than or equal to

The numerical representation of operands (fixed-point arithmetic) is
taken into account. , :

After comparing for greater than or equal to, a jump can be made
with the JC = .. . function (if the RLO = 1) to a ""label” (+ 127 words).

Original

Q35

STEP 5 representation
?tatement Ladder diagram Control system flowchart
ist
L B29
L IB30 1B29—f21 F
<=F 1B29 — F
= Q35 -
Q35 IB30—422 aF—Q35
1B 30— Q “

The first operand specified is compared with the subsequent
operand according to the comparison function the result of the
comparison is shown by the CCO0 and CC1 condition codes.

for cc1 Ccco RLO
B29=IB30 . 0 0 1
1B29 <1B30 0 1 1
1B20>1B30 1 0 0

The numerical representation of operands (fixed-point arithmetic) is
taken into account.

After comparing for less than or equal to, a jump can be made with
the JC = . . . function (if the RLO = 1) to a "label”’ (+ 127 words).

33

6. Programming examples

6.2 Supplementary operations (function blocks)

6.2.1 Binary logic functions

6.2 Supplementary operations (function blocks)

Function blocks can be programmed with an operation set supple-
mentary to the program blocks so that the entire operation set for
function blocks consists of the basic operations and the supple-

mentary operations.

The following description refers to operations which are used only
with function blocks. The possible combinations of the substitution
statements are given with the actual operands.

Function block operations can be represented only by statement
lists, i.e. the programs cannot be programmed in graphic form (CSF

or LAD).

6.2.1 Binary logic functions

Example

STL

Description

Photoelectric cell equipment connected to
input | 2.0 has been installed to count single
items. After 100 items, a jump should be
made either to function block FB 5 orto FB 6.
After a count of 800, the counter 10 is auto-
matically reset and starts counting from the
beginning again.

>

20
10
1 3.0
KC 0
Cc 10
I 40
F 52
C 10
D C 10
DW12

- QOQWVwWr>»Q0
c
(@)

TBN DW12.8
JC FB 5

JC FB 6

The count of the C 10 counter is loaded with the constant 0 by input | 3.0. Each positive
edge change at | 2.0 increments the count by 1. The counter is either reset by | 4.0 or flag
F5.2.

The current count is stored in the data word as a BCD value.

As long as the 8th data bit of DW 12 is zero, a jump is made to FB 5. This is the case for the
first, third, fifth etc. hundred pieces counted.

As long as the 8th data bitof DW 12is ’1", a jump is made to FB 6. This is true in the case of
the second, fourth, sixth etc. hundred.

As soon as the 11th data bit of DW 12is /1"’ (800 have been counted), flag F 5.2 is set
conditionally.

Photoelectric cell equipment connected to
input | 10.0 counts individual pieces. After
every 256, the counter should be reset and
start counting again.

Note:

A | 100
:CU C 20
A | 110
L KCO
'S C 20

T8 C 208
JC = FULLY

:BEU

FULLRU C 208

Counter C 2.0is loaded by input | 11.0 with the constant 0. At each positive edge change
at110.0, the count is incremented by 1.

As soon as the count has reached the number 256 £ 1004 (bit 8 is ’1""), a jump is made to
the “FULL" label; apart from this, the block is ended.

Bit 8 of counter C20 is set to 0" unconditionally, resulting in the count returning to 000y.

The times and counts are in the 10 lower-order bits (bits 0 to bit 9) of the time word/count word in hexadecimal code. The time base is stored in bit 12 and 13 of the time

word.

" See jump functions 6.2.4 (page 36)

34

6. Programming examples
6.2 Supplementary operations
6.2.2 Digital logic functions

6.2.3 Arithmetic functions

6.2.2 Digital logic functions

Example: STL Description
The hexadecimal number 3F84+ is to be | L KH 3F84 The hexadecimal number is loaded into accu 1. The old contents of accu 1 are shifted into
ANDed with inputword 1 of theinputs (IW 1). accu 2 simultaneously. .
The result is to be written into outputword | L IW 1 Input word 1 (IW 1) is loaded into accu 1 and the hexadecimal number shifted into accu 2.
10 of the outputs (QW 10).
AWF The contents of accu 1 are digitally ANDed with those of accu 2 and the result is stored
inaccu 1.
3F84u T QW 10 The contents (result) of accu 1 are transferred to output word 10 (QW 10).
IW1 47931
Result AW 0784+
The two bit patterns L KM 01....11 The first bit pattern is loaded into accu 1. The old contents of accu 1 are shifted into accu 2
0101 1110 1000 1011 simultaneously.
and L KM 01....00 The second bit pattern is loaded into accu 1 and the first bit pattern shifted into accu 2.
011100010111 1100
are to be ORed
ow] The contents of accu 1 are digitally ORed with those of accu 2 and the result is stored in
0101 1110 1000 1011 ; accu 1.
0111 0001 0111 1100 T FW 13 Th tents (result) of 1 transferred to fl d13 (FW 13
e contents (result) of acc .
Result OW 0111 1111 1111 1111 es | 1 arelransierredto flag wor)
Input word 5 is to be compared forequality | L DW 12 Data word 12 is loaded into accu 1. The old contents of accu 1 are shifted into accu 2
with data word 12. The dissimilar bits of the simultaneously.
words are to be written into outputword 6. | L IW 5 Input word 5 is loaded into accu 1 und data word 12 is shifted into accu 2.
XOowW The contents of accu 1 are digitally EXORed with those of accu 2 and the result is stored
DW 12 EA83u 1 inaccu 1.
IW. 5 68Cbu T QW 6 The contents (result) of accu 1 are transferred to output word 6.
Result XOow 8246w
6.2.3 Arithmetic functions
Example: STL Description
The right-hand byte of dataword 85istobe | L~ KF +127 The constant fixed-point number + 127 is loaded into accu 1. The old contents of accu 1
subtracted from the number + 127,andthe | L DR 85 are shifted into accu 2 simultaneously.
result stored in the left-hand byte of data . The right-hand byte of data word 85is loaded into accu 1 and the fixed-point number + 127
word 85. ~F ; shifted into accu 2.
The contents of accu 1 are subtracted from those of accu 2 and the resultis storedinaccu 1.
127 T DL 85 The contents of accu 1 (result) are transferred to the left-hand byte of data word 85.
DR 85 74
Result—F 53

Note:

When exceeding the numerial area (—32 768 to +32767) the result of operation is undefined (OVR = "1"").

35

6. Programming examples
6.2 Supplementary operations

6.2.4 Jump functions
6.2.5 Timer and counter functions
6.2.6 Shift functions

6.2.4 Jump functions

The destination for unconditional and conditional jump statements
is specified symbolically (max. 4 characters). The symbolic para-
meter of the jump statement is identical to the symbolic address of
the statement to be jumped to. When programming, it must be

remembered that the absolute jump displacement cannot be more
than = 127 words and that a STEP 5 statement cannot consist of
more than one word. Jumps can only be executed within a module;
jumps across segments are not permitted.

Example: STL Explanation
If no input of input word 1 is set, jump is | ANO:L W1 Input word 1 is loaded into accu 1. If the contents of accu 1 = 0, a jump is made to the
made to the "AN 1" label. S /AN 1" label, otherwise the next statement (Al 1.0) is processed.
. :JZ=AN1
If input word 1 and output word 3 are dis-
similar, a jump is made back to the /AN 0” A 11.0
label.
If input word 1 and output word 3 are identi-
cal, input word 1 is compared with data
word 12.)
If input word 1 t less than dat . .
W;rzﬁ 2, ajrumpliss?nrzgeetrootrheestES?'nlaSei AN1iL W1 Comparaison of input word 1 and output word 3. If dissimilar, individual bits are set in
L QW3 accu 1.
XOW
r];—:\NO If accu 1is notzero, a jumpis made back to the AN 0"’ label, otherwise the next statements
L Snlin are processed.
L IW1 Input word 1is compared with data word 12 for greater than/less than. If larger or smaller,
L DW12 RLO 1" is set.
><F

6.2.5 Timer and counter functions

Example

JC=DES

DES: A 112.2

STL

If RLO = ""1", a jump is made to the “destination” label.

If RLO = ""0”, the next statement is processed.

Description

A timer T 2 is started as-an extended pulse
with 50s pulse duration. This timer sets
output Q 4.2 for the duration of the pulse.

2.5
5.3

m>nr >
c

o——Hx"—
N

4.2

Atimer T2 is started as an extended pulse. Output 4.2 is set for 50s.

If output Q 3.4 is continually set, the time | A Q 3.4 If output 3.4 is set during the time (positive edge change of the RLO) within which input
should be continually restarted. 2.5is still set, timer T2 is restarted. This means that output 4.2 remains set for the duration
FR. T .2 of the restarted time or is set again. .
E— If input 2.5 is not set at edge change of output 3.4, the time is not restarted.
BE
6.2.6 Shift functions
Example STL Description
In data word 1 the last four bits of thehexa- | L DW 1 Load data word 1 inaccu 1.
decimal number 14AFw are to be deleted
and the resug!tant hexadecimal number | SR W 4 Shift contents of accu 1 four bit positions to the right. The bit positions which become
O14A+ stored in data word 3. [vacant on shifting are filled with zeros.
T DW3 Transfer the contents of accu 1 to data word 3.

Note:

The shift functions are executed unconditionally. The last bit shifted out can be scanned with jump functions.
A jump can be made with JZ if the bit is “0" and with N or JP if the bit is ""1".

36

6. Programming examples
6.2 Supplementary operations
6.2.7 Conversion functions

6.2.8 Decrementing/Incrementing

6.2.9 Disabling/Enabling command output

6.2.7 Conversion functions

Example | STL Description

The contents of data word 64 aretobein- | L DW 64 Load data word 64 into accu 1.

verted bit by bit and stored in data word 78 "EF'—] One’s complement of the contents of accu 1.
A_VY : Resultis in accu 1.

DW 64 EA83H T DW 78 Transfer the contents of accu 1 to data-word 78.

DW 78 157Cw

The contents of dataword42aretobeinter- | L DW 42 Load data word 42 into accu 1.

preted as a fixed-point number and stored Two's complement of the contents of accu 1.

with inverted sign in data word 35. _CSW Results are in accu 1.

DW 42 +51

DW35 -51 T DW 35 Transfer the contents of accu 1 to data word 35.

6.2.8 Decrementing/Incrementing

Example STL Description

The hexadecimal constant 1010+ is to be | L KH 1010 Load hexadecimal constant 1010+ into accu 1.

incremented in steps of 16 and stored in |7 7 Increment the low byte of accu 1 by 16. The result 1020+ is in accu 1.

data word 8. In addition, the result of incre- *L” 186 .

menting is to be decremented instepsof33 | T DW 8 Transfer the contents of accu 1 (1020+) to data word 8.

and stored in data word 9. S — Astheresultofincrementingisstillinaccu 1, thedecrement 33 can be formeddirectly fromit.
B 35 The result would be FFFu. However, as the high byte of accu 1 was not also decremented,

B the result in accu 1 is 10FFx.

T DW9 The contents of accu 1 are transferred to data word 9 (10FF+).

Note:

Incrementing and decrementing are always decimal, the results are always stored in accu 1 in hexadecimal.

6.2.9 Disable/enable command output

Example STL Description
If input 0.5 is set, the commands following | A 10.5 Scanning input 0.5 for 1"
are to be disabled. BAS Disable command output with input 0.5 set (RLO 2 1)
A I 0.6 Scanning input 0.6 for "1”
If input 0.6 is set and input 0.5 reset, the | AN 10.5 Scanning input 0.5 for ‘0"
command disable is to be cancelled. _
BAF Enable command output if input 0.6 is set and 0.5 is not set (RLO 2 “1").

Note: ’
"Disable/enable commend output” can be used, for example, to repeat a sequence at a certain step without setting or resetting the steps already run through.

37

6. Programming examples

6.2 Supplementary operations
6.2.10 Disable/enable interrupts
6.2.11 Processing functions

6.2.10 Disable/enable interrupts

Example STL Description
Disabling and then enabling interrupt pro-
cessing within a certain program section. :
Q7.5
E Disable interrupt
12.3
U FB3 If aninterrupt occurs, interrupt block FBO is not first jumped to on jumping to FB3, but the
program is processed normally.
RA Enable interrupt.
If the interrupt is still pending, a jump is first made to the interrupt block FBO at a block
boundary.
6.2.11 Processing functions
Example STL Description
The actual parameters of the inputs scanned Do DW12 } Process data word 12. If high byte 6 and low byte 43 are in data word 12, input 43.6 is
are to be stored in data word 12. 3 ;i scanned for "1”.
10.0
The actual parameters of the times it is de- || po DW13 Process data word 13. If high byte 0 low byte 15 are in data word 13, the time 15is enabled
sired to enable again are to be stored in — by via input 43.6 for cold restart.
data word 13. TO
The contents of data words DW 20 to DW L KB20 Load constant 20 into accu 1.
100 are to set to signal state "’0”. The index :T DW1 Transfer contents of accu 1 to data word 1.
register forthe parametersofthedatawords | M1 :L KHO Load hexadecimal constant 0 into accu 1.
is DWO. R
DO DW1 Process data word 1
T DWO0 Transfer contents of accu 1 into the data word the address of which is stored in data
word 1.
L DW1 Load data word 1 into accu 1.
HE KB1 Load constant 1 into accu 1.
Data word 1 is shifted into accu 2.
:+F Accu 1 and accu 2 are added together and the result is stored in accu 1 (increasing the
data word address).
T DW1 Transfer contents of accu 1 into data word 1 (new data word address).
L KB100 The constant 100 is loaded into accu 1 and the new data word address is shifted into
accu 2.
<=F Comparison of the accus for less than or equal
accu2 <accu 1
JC= M1 Conditional jump to label M1 as long as
Note: . accu2is<accu 1.

The 670 programming unit does not check the legality of the combination of the parameters with the operands. The parameter is assigned to the specified operation »
from the data or flag word. The high byte of the flag or data word is only necessary for inputs/outputs and for flags (between 0 and 7), otherwise it must be 0.

The "Al” operation in combination with “DO DW" and “"DO FW"
becomes an “AQ" operation if the byte address in the data/flag

word is larger than 127.

The folldwing operations can be combined with the DO DW/DO

If a parameter =+ 0 is specified for the operations which are combi-
ned with "DO DW" or “DO FW”, no address computation is execu-
ted. Both parameters are ORed.

FW operation:

A-, AN-, O-, ON- Binary functions
S, R, =- ' Memory functions
FRT,RT,SFT,SRT,SPT,SST,SET Timer functions
FRC,RC,SC,CDC,CUC Counter functions

L-, LD, T-

JU,3C,JZ,IN, 3P, IM, 10
SLW, SRW

D,

CDB, JU-,IC-

Load and transfer functions
Jump functions

Shift functions
Decrementing, incrementing
Block calls

38

6. Programming examples
6.2 Supplementary operations

6.2.12 Substitution functions

6.2.12 Substitution functions

When processing the STEP 5 program, the PC executes a "’substitu-
tion”” within a functionblock if the operand is a formal parameter (e.g.

AND — OR logic with RS flip-flop

Program in function block (FB 30)

Function block call

Executed program

HANS stands for | 1.5, see page 9). When the function block is called,
the formal parameter is replaced (substituted) by a genuine operand.

ks cpe STL A 120
A =INP 1 :JU FB30 :AN 121
AN =iNP 2 NAME: LOGIC :0 122
. “iNP3 | NP 1: I 20 :S Q7.3
|8 ~MOI 5 INP 2: I 21 = Q7.1
L ~OUTH INP 3: | 22 A 123
A WAL VAL 1: 1 23 A 121
Lol =INP 2 ouT1: Q7.1 :ON 122
} {ON =INP3 ouT 2: Q72 R Q7.3
| RB ~MOT5 MOT5: Q73 = Q7.2
| e “OUT2 :BE :BE
‘BE
LAD/CSF
B3
120~ - | INP1 out1 [T~ ard
121- =1 INP2 our2 |~ Tar2
122-— | INP3 MOT5 :———075
123——1 VALl !
Operation Description
A =. ANDing. Scanning a formal operand for 1" [operands |, Q, F, T, C].
AN =.. ANDing. Scanning a formal operand for ’0" [operands |, Q, F, T, C].
(0] =... ORing. Scanning a formal operand for 1" [operands |, Q, F, T, C).
ON =.. ‘| ORing. Scanning a formal operand for 0" [operands |, Q, F, T, C].
S =... Binary setting of a formal operand [operands |, Q, F].
RB =... Binary resetting of a formal operand [operands |, Q, F].
= = Assignment of the RLO to a formal operand [operands |, Q, F).
Load and transfer functions
Program in function block (FB 34) Function block call Executed program
A =l0 STL A I 20
:JU FB 34 L FW 10
NAME: LOAD/TRAN :S C 6
10 : I 20 A 121
11 21 L KC 140
L1 FW 10 :S c 7
LW 1: KC 140 A 122
LC 1: c 7 :CU C 6
T1: Qw4 :CU c 7
w2 KC 160 LD c 7
: BE T Qw4
A I 27
R C .6
LAD/CSF f‘L* (K:C Zeo
FB 34 :
[| LD c 7
120 ==—1 10 T1 |—— Qw4 ::;F
| : c 7
121 === I : :BE
|
FW10 ——¢ L1 :
KC140-—; LW1 |
¢7 ———| b1 |
KC160——| LW2 !
e o e e e e 1

Operation Description
L =. Loading a formal operand. The value of the operand specified as formal operand is loaded into accu 1
[operands B, IW, FB, FW, QB, QW, DR, DL, DW, PB, PW].
LD =.... Loading a formal operand as BCD number. The value of the timer or counter location specified as formal operand is loaded into accu 1 as
a BCD number [operands T, C].
Lw =.. Loading the bit pattern of a formal operand. The bit pattern of the formal operand is loaded into accu 1
[operands KB, KS, KF, KH, KM, KY, KT, KC].
T . = Transfer to a formal operand. The contents of the accu are transferred to the operand specified as formal operand
[operands B, IW, FB, FW, QB, QW, DR, DL, DW, PB, PW].

39

6. Programming examples
6.2 Supplementary operations
6.2.12 Substitution functions

Timer functions
Program in function block (FB 32) Function block call Executed program
:AN =15 STL :AN 1 25
A =16 :JU FB 32 A I 26
L KT5.2 NAME: TIME :L KT5.2
i i I 5 | 25 :SF T5
{ SFD =TIM EJ 16 : | 26 A I 25
S e el R i i i i i TlM 5: T 5 AN l 26
A =15 T™ 6: T6 L KT 5.2
:AN =16 OuT6: Q76 :SS T6
:L KT5.2 :BE A T5
] :0 T6
| :ssu =TIM6| = Q76
A =TIM5 LAD/CSF A -
:0 =TIM6 FB32 R T 6
= =0uT6 [! ‘BE
‘A 12.7 12.5 : 15 OuTe :———O7.6 :
i 126 ———1| 16 [
RD =TIM 5 I |
'L ‘RD =TIMB T5————1 TIM5 |
et L | |
-BE T6————1 TIM6 |
e e —] |
Operation Description
SP =.... Starting a timer specified as formal operand with the previously loaded time as pulse [operand T].
SEC =... Starting a timer specified as formal operand with the previously loaded time as extended pulse [operands T and C (see counter functions)].
Sl =.... Starting a timer specified as formal operand with the previously loaded time as “’on"’ delay [operand T).
SFD =... Starting a timer specified as formal operand with the previously loaded time as “off” delay [operands T and C (see counter functions)].
SSuU =... Starting a timer specified as formal operand with the previously loaded time as stored “on” delay [operands T and C (see counter.
functions)].
FR =.... Enable a formal operand for cold restart [operands T and C (see counter functions)].
RD =.... Digital resetting of a formal operand [operands T and C].
Counter functions
Program in function block (FB 33) Function block call Executed program
:A =2 STL A I 22
L KC 17 :JU FB33 L KC17
. i i NAME: COUNT :S C5
‘ SEC ~COoU5 | 2 - I 22 A I 23
e : I3 I 23 :CU C5
A =13 I 4 I 24 A 1 24
T —— COU5: C5 :CR C5
| ssu ~cous | outs: Q173 A Cs
y : :BE = Q73
A =t4 A I 27
T R C5
[;?f? e J LAD/CSF BE
A =COU5 FB 33
= =ourzs | _ . —T—TT-T—-—-T-—-== o
A 127 122 ——-! 12 ours 1-- Q73
: 123 ———! 13 !
| RO ~cous | !
: : 124 === 14 |
:BE ! |
cs5——--!cous :
Operation Description
SEC =... Setting a counter specified as formal operand with the previously loaded count [operands C and T (see timer functions)].
SSuU =.... Incrementing a counter specified as formal operand [operands C and T (see timer functions)].
SFD =.... Decrementing a counter specified as formal operand [operands C and T (see timer functions)].
FR =.. Enabling a formal operand for cold restart [operands C and T (see timer functions)].
RD = Digital resetting of a formal operand [operands C and T].

40°

6. Programming examples
6.2 Supplementary operations

6.2.12 Substitution functions

Processing functions

Program in function block (FB 35)

Function block call

Executed program

STL :C DB 5
l DO -D5 | U FB 35 L DW 2
NAME: PROCS. :C DB 6
L =DW 2 D5 : DB5 T DW 1
: v DW2 : DW2 T AW 4
L;Do =D6] D 6: DB 6 U FB 36
- DW 1 : DW1 :BE
T =DW1 Q4 Qw4
T =Q4 F36 FB 36
| po. =F36 | ‘B
:BE
LAD/CSF
FB 35
DB5 ———I D5 DW1 I———DWT
DW2_———1 DW2 Q4 :———ow4
DB6 — — — : D6 ' :
FB36 ———1 F36 :
Operation Description
DO = Process formal operand
Only
c DB
U PB
U FB

can be substituted.

41

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.1 General

7. Rules governing compability between
the LAD, CSF and STL methods
of representation

7.1 General

Each of the methods of representation in the STEP 5 programming
language has specific properties and limitations. Consequently, a
program block written in STL form cannot simply be output as an
LAD or CSF and the graphic methods of representation LAD and
CSF may not always be fully compatible. In other words, it is not
always possible to translate back from one form to the other.

If the program has been entered as a LAD or CSF, it can be always
translated back into STL form.

STL

Fig.22 Range and limitations of the methods of representation of the STEP 5
programming language.

Input Output

The aim of this section is to establish a number of rules, which, if
adhered to, will assure complete compatibility between the three)

methods of representation.

These rules are classified as follows:
@ Rules for compatibility between the graphic methods of repre-
sentation. /”_\ v
If these rules are followed, input is possible in one graphic form and
output in the other form.

Fig. 23 Graphic input

Input Output

@ Rules for compatibility between statement lists and graphic me- /\
thods of representation.

If these rules are followed, it is possible to enter a program in any of

the methods of representation, graphic or otherwise, and have it .

output in the other two forms. Fig. 24 Inputin the form of a statement list

42

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation
7.2 Rules governing compatibi!’ty between the graphic methods

7.2 Rules governing compatibility between the graphic methods

7.2.1 Input in LAD, output in CSF (STL)
Rule: Do not exceed the display boundaries for CSF.
Excessive nesting can lead to the exceeding of the image boundaries (8 levels) in the CSF.

EING. 2 INPUT; AUSGANG 2 OUTPUT

1 I
I-EING. 1 ~EING. 2 -EING. 4 -~EING. 6 ~AUSGANG
4===] [—=—4===] [=——4===] [===4~==] [~=—dommmmmmme PY——— $m i +=-=() =-1
1 I I 1 1
I-EING. 3 I I I I
B [R + + + 1
I I 1 I
I-EING. 5 I 1 I
dmmm] [mmmdm e o + + 1
I 1 b
I-EING. 7 1 1
=] [t o o + I
a) LAD
EING. 1 ——-! & ! _____
~EING. 2 ---! l-=—== t>=11
1 1 t v
-EING. 3 —-=! l-=——o ra !
o i v
-EING. 4 --=! !——=—-n 1>=11
]] 1 v
~EINB. 5 --=! l--=—- A

t ! 1 v

b) CSF -EING. 6 ——-! R 1>z11
' ' ! !

Fig. 25 Example of maximum LAD nesting for output in CSF form ~EING. 7 ---! !-— -AUSGANG

7.2.2 Input in CSF, output in LAD (STL)

Rule 1: Do not exceed the display boundaries for LAD.
Too many inputs on a CSF box cause the LAD display boundary to be exceeded.

~EING.
-EING.
-EINB.
~EING.
-EING.
-EING.
~EING.

NN -
|
1
f

-~ —-AUSGANG

I-EING. 1 ~-EINB. 2 -EING. 3 -EING. 4 -EING. 5 -EING. 6 ~-EING. 7 -AUSBANG

Fig. 26 Example of maximum AND box in CSF form for output as an LAD

43

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.2 Rules governing compatibility between the graphic methods
7.3 Rules governing compatibility between the STL and graphic methods

Rule 2: The output of a complex element (memory, comparator, timer and counter) must not be ORed.

~EING. 1 --15 !
' v
~EINB. 2 -—IR @t——=—=1 & 1
. | ! '
-EING. 3 —---1! l-- ~AUSGANG

Fig. 27 Only AND boxes are allowed in a CSF after a complex element.

Rule 3: Connectors
@® Connectors are always permitted with OR boxes
@® Connectors are only permitted at the first input with AND boxes

Previous logic 1
operation #— >
OQutput
 — DuP
#— &
X OQutput
X fr—

Fig. 28 Examples showing when connectors are permitted with OR and AND boxes (3 connectors permitted; x connectors not permitted).

Note:
Connectors are intermediate flags that are used to reduce the number of recurrent operations.

7.3 Rules governing compatibility between the STL and graphic methods

Rule 1: AND operation
Scanning the signal state and ANDing with the result of the previous logic operation

LAD: Contactin series LAD: N

CSF: Input of an AND box CSF: — &

STL: Statement A. . .-

STL: A...

44

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation
7.3 Rules governing compatibility between the STL and graphic methods

STL: LAD: CSF:
= r
U -EING. 1| [piNg. 1 -EING. 2 -EING. 1 —I & T
W -EING. 2 g o n] [~EING. 2 ~-=1 l=—=-= 5277
:0 -EING. 3 I i 1] | I
:0 , I-EING. 3 I ~EINB. 3 ---1 !
IEU ~EING. 4] =] [t + |]
U -EING. 5 I -EING. 4 —3 &1 I
: I-EING. 4 -EING. 5 I -EING. 5 ---! l-—-—- R B
: $—3 F—+t---1 [-——+ L Lo
I
:U EING. 1) © _EINB. 1 -—=T BT
: s I-EING. 1 -EING. 2 -EING. 1 ---! & '
EO—EING. 2] 4-_] [--—t— F—+---—- “EING. 2 — l1-—=-- 13377
:0 -EING. 3 I 1 | 1 i 1
:0 t I-EING. 3 I -EINB. 3 ---! !
H1] -EING. 4 +......I.] [~m—fmmmm————— + ! 1
Cu -EING. ST | ° I “EING. 4 ——=1 & 1 Lo
' I-EING. 4 -EING. 5 I ~EING. 5 — l----- R
: 4===1 [-——+—3 E—+ t_! b
I EING. 2 INPUT; AUSGANG 2 OUTPUT

Fig.29 ANDing

Rule 2: OR operation
Scanning the signal state and operation after ORing with the result of the previous logic operation
LAD: Only one contactin a parallel branch
CSF: - Input of an OR box

STL: Statement O . .. LAD: L_| |_| l_—l |_‘

CSF: —] >
STL: O...
STL: LAD: CSF:
I —
N EINe. y I-EING. 1 -EING. 2 ~EING. 1 -—-T7&° T _____
. - ——— ———fmm=] [~——pm———— - RE—— | | [I>»=11
:0 -EING. 3] T it I EING. 2 E >
:0 - -EINE. 3 — 1
U -Eme. 4 | EI?EE 3 : ' EING. 3 Lo
iU -EING. 5 I ~EING. 4 --=T & 1 roo
: I-EING. 4 -EINB. 5 I -EING. 5 --=! l-—--- N
: #===1 [-==4-=-] [---+ t__! b
I
Fig.30 ORing

45

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

Rule 3: AND before OR operation

ORing of AND functions
LAD: Several contacts in a parallel branch LAD: H | H I
>=1 f—
CSF: Box before OR box CSF: - & — &
- L— >=1 —
STL: Statement O STL: A .. @]
A... A... A..
A... A..
STL: LAD: CSF:
- - I
N TEIes b 1-Eme. 1 -EING. 2 ~EING. 1 g
= J 1 E + i B——g-——-- -~EING. 2 >=1]
0 -EING. 3 | 1
H , -E1 - _—
U -EING. 4 iff?ﬁﬁ_f_,L __________ f, EING. 3
U -EING. 5 ~
I 5 NG. 5 I -EING. 4 — & '
I-EIN . 4 -EING. I -EING. 5 -
I
Fig. 31 AND before OR operation EING. 2 INPUT; AUSGANG 2 OUTPUT

Rule4: Bracketing
This rule deals with the bracketing of complex binary operations, or complex elements with preceding and subsequent logic operations.

A

—~

Preceding logic
operation

&

& _

. O) Subsequent logic
O operation

Fig.32 Bracketing

46

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation
7.3 Rules governing compatibility between the STL and graphic methods

a) Complex binary logic
This class includes OR before AND operations, the rules for which are as follows:

@ AND operation before OR functions
LAD: Switch parallel contacts in series
CSF: OR box before AND box
STL: Statements

A(
OR
operation

)

LAD CSF: STL:

j:j ::1 — >
—

[1]

>~ 000X

Fig. 33 OR before AND operation

The OR before AND operations are classed as a subset of the complex binary operations, whereby parallel contacts constitute the simplest com-
plex binary logic.

STL LAD CSF
A Preceding operation L A() . .
A (Preceding Preceding operation
: operation]
: Complex &éf A)
: §
cf Subsequent —_
A Subsequent operation operation s
Subsequent operatzn_

Fig. 34 Bracketing complex binary functions

47

7. Rules governing compatibility between the LAD, CSF and STL

methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

b) Complex elements (memory, time, comparison or counter
functions).

The following rules must be adhered to for complex elements:

® No brackets if there is no subsequent operation

® Subsequent operation AND A(.. . .)

® Subsequent operation OR (only for CSF, not permitted for LAD)
O(...) '

@® A complex element must not have a preceding operation.

In addition, each unused input or output must be assigned an NOP 0

operation.

Exception: S, TW with timers and S, CW with counters must always
be defined together.

When programming with the STL, the complex elements must be
programmed in the same order as they are assigned parameters on
the screen in graphic mode.

Exception: Times and counts. The relevant value must previously

have been stored in the accumulator with a load statement.

—~AUSGANG

i m- A - --1

LAD/CSF o

bt bt b Bt

I

L I I I o B R B e I S Sy S Ay

I

STL: LAD:
1
U -EING. 2 I-EING. 2 I__lt_]?_'
H. DW10 ===] [~=—=+-11 —'v:
:SV_ T 100 I- DW 10 --1TW DU!—
:NOP O 1 ! DE! —
:NOP O 1 i |
:NOP O 1 1 1 |
U T 100 1 +—iR @!~—-”—+--—‘(y——1
= -AUSGANG 1 v I 1
: 1
a) I
I Z 1
U -EING. 1 I-EIN6. 1 _______
12V Z 1 +-==1 [-——+-1ZV 1
U ~-EING. 2 I ! !
tZR Z 1 I-EING. 2 ! 1
:y -EING. 3 +---1 [---+-1ZR !
L EW2 I ! !
. 7 1 I-EING. 3 ! !
:NOP O #-===1 [---+-1!8§ !
:NOP O I- EW2 --1ZW DU+
:NOP O I ! DE +—
U Z 1 I ! :
:= -AUSGaNG ! !
: 1 +—R
1
b) i

A(

Complex
function &

oloment l_ Subsequent
operation

CSF

Ci ox
ftmgon) 21

t
slemen Subsequent
operation

Fig. 35 Bracketing complex elements

CSF:
T 100
-EING. 2 --11_- VT
DW 10 -=1TW DU—
! DE—
—iR @Q!- -AUSGANG
! 1
Z 1
-EING. 1 --12V 1
~EING. 2 --1ZR !
-EING. 3 --1§ !
EW 2 ~=1ZW DU—
! DE+—

—iR @!'- -AUSGANG

EING. 2 INPUT; AUSGANG 2 OUTPUT

Fig. 36 Parameter assignment to unused inputs and outputs a) in the case of timers b) in the case of counters

Note: Only one complex function element is permitted per segment or rung.

7. Rules govermng compatibility between the LAD, CSF and STL
methods of representation
7.3 Rules governing compatibility between the STL and graphic methods

The following examples show the four aforementioned cases in a complex binary operation in an STL and LAD (below) and as an STL and CSF
(opposite).

Example 1: STL/LAD

Case 1: AND (contacts in series)

Case 2: OR (only, one contact in a parallel branch)

Case 3: AND before OR (several contacts in one parallel branch)
Case 4: OR before AND (bracketing)

STL LAD
_ AL..®..)
—: U () Al..©..) 1
[*:u¢ 1 \JEING. 2 -—EM‘ ~EING. 4 -AUSBANG
®:0 -EING. 1 —==1 [-—=+---1 [-—-+---] [--“@--- 1 [———4-————- +——=()--1
L:O -EING. 5 | 1 1 1 1
®) I-EING. 5 I-EING. & I 1 I
(U 4-==1 [——=#===1 [-——4-—mmmmmmm + +
(U -EINB. 2 I 1 1 I
‘U -EING. 3 I-EING. 7 I I 1
:0 -EING. 6 dmmm] [mmmdmmm e PR —— + 1
:) I I I
L.-O -EING. 7 I1-EING. 8 -EING. 9 I 1
ey +--=1 [~—=4--=] [~ Fo +
iU -EING. 4 1
:0
:U -EING. 8
iU -EING. 9
iz -AUSGANG
EING. 2 INPUT; AUSGANG 2 OUTPUT
Case 1: -EINB. 2 -EING. 3 -EING. 4 -EING. 8 -EING. 9
rv— — —d — —3 — — — —3

Case 2: -EING. 1 '-EING. 6 1 I—EING. 7]

Case 3: -EING. 2 -EING. 2 ,—EINE. 8 -EING. 9 1
r——a o —— &-——1 3 E } 3 F + + 4

Case 4: 1

I-EING. 1 ~-EING6. 2 -EING. 3

e @] [~ @t =] [——=+~—==] [———@f—---

1 1 1 I

I-EING. 5 I I-EING. & 1

t-==]1 [~—== -——=] [+

I-EING. 1 -EING. 2 -EING. 3
cer —d@--=-] [-==#-=--] [-—-+---] [-~-@—p—— ---

1 1 I
‘I-EING. 5 I-EING. 6 I
+-=-=1 [-==4---] [--—4-——nm~ +
1 I
I-EING. 7 I
te==] [~——t————— o +

Fig. 37 Example 1: STL/LAD

49

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

Example 2: STL/CSF

Case 1: AND (input of an AND box)

Case 2: OR (input of an OR box)

Case 3: AND before OR (AND box before OR box)
Case 4: OR before AND (OR box before AND box)

STL) CSF
—tU(e e e e @ e mmm e m e m e
U -~EING. 1 —--1>=11
. A . 3T
:0 -EING. 1 (‘-E-ING. 5 ——=t 1-4---T7371
. = _ —— —4 = ! !
T T e o e W
:) A -EING. 3 --=! l==-=m- 13311 b
HITX ! ! ! ! ! [
@)(L-':U -EING. 2 CEING. 6 —--t eopem bmmeeo C
H -EING. 3 ___-_‘____©___—:':_. -EiNG '7 —— TP Y
: - iG. & [[[
L? EIN -EING. 4 --—=! l-—=e- 15211
. 1] [} 1
:0 -EING. 7 =
L »3) -EING. 8 ---1 & ! '
:y -EING. 4 -EING. 9 ---!' : ----- : :-- -AUSBANG
:0 ettt
HIv -EING. 8
U -EING. 9 EING. 2 INPUT; AUSGANG 2 OUTPUT
HE ~AUSGANG
—Tr
-EING. 2 =—d & ! roo -EING. 8 —J & !
Casel: _gINg. 3 — ! -EING. 4 —1 ! -EING. § — !
)

..... 13211 -=13>z11
-EING. 1 —I>=11 ot !
Case2: _gINg. § — 1= -EING. 6 — 1= -EING. 7 ==t l==—
1 [r__t L.
>=1
: . -EIN6. 2 ---["® -EING. 8 -—-[&
Case3: _ging. 3 -—-| [----- >=1 -EING. 9 --- -
-l
>=1
. -EING. 1 ---[>=1
Cased: _gING. 5 ——of |---m- t -EING. 6 --- -
>s1
-EING. 7 ===} |----- :

Fig.38 Example 2: STL/CSF

50

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility betwc 2n the STL and graphic methods

Rule 5: Connectors STL: LAD:
For reasons of clarity, the rules for connectors are given separately =F...

for the LAD and CSF methods. AF... F...
a) with LAD

A connector as intermediate memory notes the result of the logic
operation programmed before it in its own line.
The following rules apply: Fig. 39 The connector in the STL and LAD

@ Connector in series (with other contacts). STL:
A connector is treated in this case as a normal contact.

> >> >
R R

@ Connectorin a parallel branch. Within a parallel branch a connec-
tor is treated as a normal contact. In addition, the entire parallel
branch must be enclosed within brackets of the O type (.. .). LAD

e L L L [

a)
@ A connector must never stand immediately after the line (connec- STL:

tor as first contact) or directly after the opening of aline (connec- .

tor as first contact within a parallel branch). A ..
A(
A...
o(
A...
=F..
AF..
)
)
A..

LAD: .
==k
b)

Fig. 40 Connector rules for LAD a) Connector in series
b) Connector in parallel branch

51

7. Rules governing compatibility between the LAD, CSF and STL

methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

b) with CSF

A connector as intermediate memory notes the result of the entire
binary operation before this connector.

The following rules apply:

® Connector at the first input of an AND or OR box.
The connector is not bracketed.

@® Connector not at the first input of an OR box.

The entire binary operation before the input is enclosed in
parentheses of the O(. . .) type.

® Connector not at the first input of an AND box.

The entire binary operation before the input is enclosed in
parentheses of the A(. . . .) type.

Only permitted with CSF (cannot be represented graphically with
LAD).

STL:
=F...
AF...

CSF:
—F .

Fig.41 The connectorin STL and CSF

STL:
=F...
AF...

>

STL:

O...

O(
Preceding
operation
=F...
AF...

)

STL:

A...

A(
Preceding
operation
=F...
AF...

)

CSF:
—#F &
CSF:
- >=1
Prec. % :
oper.
CSF:
&
Prec. —#F
oper.

Fig. 42 Connector rules for CSF

52

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation
7.3 Rules governing compatibility between the STL and graphic methods

Connector examples:

STL: CSF:
U -EING. 1
U -EINB. 2 -EING. 1 -———1 & !
U -MERKER 1 -EING. 2 ——-! !
—»: U (-MERKER 1---1 !
U -EING. 3 ! :
U -EING. 4 ~-EINB. 3 -——-! & ! ! !
:U -MERKER 2 -EINB. 4 ---! v ! !
:0 ~MERKER 2---! lm e 1>=11 ! !
U -EING. 5 ! ! ! ! ! !
:U -MERKER 3 ____ ! ! ! !
Lp:) ~EING. 5 ---! & ! ! ! ! !
:U -MERKER 4 ~MERKER 3---! Pomm e ! P !
= -AUSGANG . L !

-MERKER 4---! I-— —AUSGANG

1 !

I-EING. 1 -EING. 2 -MERKER 1 —-EING. 3 -EING. 4 -MERKER 2 -MERKER 4 -AUSGANG
#~==1 [===4===1 [===#-==] [===t===] [~=—pm==] [==—d===] [=m—dmm=m=] [=—md===(}==1

i 1 1 1
I I-EING. 5 ~-MERKER 3 I I
I e T e S I B S e I
I 1
Fig. 43 Example 1: without connectors EING. 2 INPUT; AUSGANG 2 OUTPUT; MERKER 2 FLAG
STL:
U -EING. 1
U -EINB. 2
= -MERKER 1] , CSF:
:U -MERKER 1[~°™ e
—»: 1 (-EING. 1 ~=—=1 & U
‘U -EING. 3 ~EING. 2 ——-! l——#-MERKER 1---1 & !
:U -EING. 4 .. - 1! ! !
.z ~-MERKER 2 ~-EING. 3 -0 & 'V ! !
:U -MERKER 2(C°"2 -EING. 4 ---! l-~#-MERKER 2---1>=11 ! '
10(. ! ! ! !
:U -EINB. 5 [. ! ! ! !
.= -MERKER 3 ~EING. 5 ---! & !-~#-MERKER 3}--! e ! | -—#-MERKER 4
‘U -MERKER 3 [°°on-3 tot 1 N ~AUSGANG
=) :BE
L—p:)
:= -MERKER 4 A
:U -MERKER 4 [Com
:= -AUSGANG
I LAD: I
I-EING. 1 -EING. 2 -MERKER 1 -EING. 3 -EING. 4 -MERKER 2 -MERKER 4 -AUSGANG
1—»—3 [——=t===] [———t— (#) mm=] [==—4===1 [~=t (#) () ———==() =-1
I
I ~-EING. 5 -~MERKER 3 1
1 —em] [(#) ——p e e :BE

Fig. 44 Example 2: with connectors

Connector 1: Result of logic operation of Al 1 and Al 2
Connector 2: Result of logic operation of Al 3 and Al 4
- Connector 3: Result of logic operation of Al 5
Connector 4: Result of the entire binary operation

53

8. Notes on estimating the required memory space

8. Notes on estimating the required
memory space

The S5—110S programmable controller permits a maximum user
memory configuration of 24.5 K words. Regardless of the memories
plugged in, the CPU has an internal user memory of 0.5 K words.

The memory space required for a program can be roughly estimated
as follows:

Statements in program blocks:

A = (PB-MQW) =8x = (I + MQ) + 12
(= drives + = sequence cascades)

Statements in function blocks:

B =FB-MQW = (number of FB) x 150

Data words:

C =DW = 2 x =drives + Zsteps (sequence cascade) + 10 x
= messages + 256 (for listing)

Statements in organization block:

8xZ (1+Q)

D 3 OB-QW: 150

Required memory space=A+B+C+D

54

9. Total overview of STEP 5 operations

9.1 Basic operations
9.1.1 Binary logic operations

Condition Codes?
o= |
| 2|2[8/5[8
Cycle Operation code TS5
Operation Parameter time (us) Byte O] Byte 1 depends on | affects Function
: . : Bit Byte
9.1.1 Binary logic operations addr. a&/ér. AND logic
C 0 0 0 Scan
A | 0.0to 127.7" 6.9 1100 - OXXX| OXXX XXXX 2 1;2 | inputfor’’1”
C 0 8 0 Scan
A Q 0.0to 127.7" 6.9 1100 OXXX| 1IXXX XXXX 2 1;2 | output for 1"
8 0 0 0 Scan
A F 0.0 to 255.7 7.1 1000 OXXX| XXXX XXXX 2 1,2 | flag for”1”
E 0 0 0 Scan
AN | 0.0to 127.7" 7.4 1110 OXXX| OXXX XXXX 2 1;2 | inputfor”0”
E 0 8 0 Scan
AN Q 0.0to 127.7" 7.4 1110 OXXX| 1XXX XXXX 2 1;2 | output for "0”
' A 0 0 0 Scan
AN . F 0.0to 255.7 71 1010 OXXX| XXXX XXXX 2 - 1;2 | flag for 0"
Bit Byte
addr. addr. ORlogic
(¢] 8 0 0 Scan
O | 0.0t0 127.7" 7.2 1100 IXXX| OXXX XXXX 2 1,2 |inputfor”1”
C 8 8 0) Scan
O Q 0.0to 127.7" 7.2 1100 IXXX| 1XXX XXXX 2 1,2 | output for 1"
8 8 0 0 Scan
O F 0.0to 255.7 7.4 1000 IXXX| XXXX XXXX 2 1,2 | flagfor”1”
E 8 0 0 Scan
ON | 0.0to 127.7" 7.4 1110 IXXX| OXXX XXXX 2 1;2 |inputfor”0”
E 8 8 0 Scan
ON Q 0.0t0 127.7" 7.4 1110 IXXX] 1IXXX XXXX 2 1,2 | output for 0"
A 8 0 0 Scan
ON F 0.0to 255.7 7.7 1010 IXXX| XXXX XXXX 2 1,2 | flag for "0"”
Word
address AND logic
F 8 0 0 Scan
A T 1t0 127 7.4 1111 1000 | XXXX XXXX 2 1,2 | timerfor”'1”
F (¢] 0 0 Scan
AN T 1t0 127 7.7 111 1100 | XXXX XXXX 2 1,2 | timerfor 0"
B 8 0 0 Scan
A C 1to 127 7.7 1011 1000 | XXXX XXXX 2 1,2 | counter for contents > 0
B C 0 0 Scan counter for
AN C 1to 127 7.7 1011 1100 | XXXX XXXX 2 1,2 | contents =0
Word
address OR logic
F 9 0 0 Scan timer
(@) T 1to 127 7.7 11 1001 | XXXX XXXX 2 1;2 | for”1”
F D 0 0 Scan timer
ON T 1to 127 8.0 111 1101 | XXXX XXXX 2 1,2 | for”0”
B 9 0 0 Scan counter
O C 1t0 127 8,0 1011 1001 | XXXX XXXX 2 1;2 | forcontents >0
B D 0 0 Scan counter
ON C 1t0 127 8.2 1011 1101 | XXXX XXXX 2 1,2 | forcontents =0

1) The input and output bytes (words) 64127 (64—126) and the peripheral bytes (words) 64— 127 (64—126) can be used as additional flag bits, bytes and words, as
the maximum peripheral configuration cannot exceed 64 input/output bytes. :

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result oraccu 1 =0, CC1 CCO = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu:

55

9. Total overview of STEP 5 operations
9.1 Basic operations

9.1.1 Binary logic operations

9.1.2 Setting/resetting operations
9.1.3 Timer and counter operations

Condition Codes?
o Q= |
. 2|8 ‘8 3
Cycle Operation code —Tatel<®
Operation Parameter time (us) Byte O Byte 1 depends on | affects Function
' AND/OR logic
F B 0 0 ORing
(@] _— 47 1111 1011 2 1;2 | of AND functions
B B 0 0 ORing
O(_ 8.5 1011 1011 2 1;2 | of bracketed expressions
B A 0 0 ANDing
A(E—— 8.8 1011 1010 2 1,2 | of bracketed expressions
B F 0 0 Right parenthesis
) e — 8.5 1011 1111 2 1,2
. . . Bit Byte
9.1.2 Setting/resetting operations addr. address
D 0 0 0 Setinputto 1"
S | 0.0to 127.7" 8.0 1101 OXXX| OXXX XXXX 1 2
D 0 8 0 Set output to 1"
S Q 0.0to 127.7" 8.0 1101 OXXX| 1XXX XXXX 1 2
9 0 0 0 Set flag to "’1”
S F 0.0 to 255.7 71 1001 OXXX| XXXX XXXX 1 2
F 0 0 0 Set input to 0"
R | 0.0to 127.7" 8.0 1111 OXXX| OXXX XXXX 1 2
F 0 8 0 Set output to 0"
R Q 0.0to 127.7" 8.0 1111 OXXX| 1IXXX XXXX 1 2
B 0 0 0 Set flag to 0"
R F 0.0 to 255.7 7.4 1011 OXXX| XXXX XXXX 1 2
D 8 0 0 Set input to ’1” conditionally
= 1 0.0to 127.7" 7.7 1101 IXXX| OXXX XXXX 1 2
D 8 8 0 Set output to 1" conditionally
= Q 0.0to 127.7" 7.7 1101 IXXX| 1IXXX XXXX 1 2
9 8 0 0 Set flag to "’1” conditionally
= F 0.0 to 255.7 6.8 1001 IXXX| XXXX XXXX 1 2
. . Word
9.1.3 Timer and counter operations address
3 4 0 0 Start timer as pulse
SP T 1to 127 18.7 0011 0100 XXXX XXXX 1 2
1 (o] 0 0 Start timer as extended pulse
SE T 1to0 127 17.9 0001 1100 | XXXX XXXX 1 2
2 4 0 0 Starter timer as ON delay
SR T 1to 127 18.1 0010 0100 XXXX XXXX 1 2
2 C 0 0 Start timer as stored ON delay
SS T 1t0 127 18.1 0010 1100 | XXXX XXXX 1 2
1 4 0 0 Start timer as OFF delay
SF T 1to 127 17.9 0001 0100 | XXXX XXXX 1 2
3 (o] 0 0 Reset timer
R T 1to 127 104 0011 1100 | XXXX XXXX 1 2
5 C 0 0 Set counter
S C 1to 127 19 0101 1100 | XXXX XXXX 1 2
7 C 0 0 Reset counter
R C 1to 127 10.4 0111 1100 XXXX XXXX 1 2
6 (o] 0 0 Count up
CuU C 1to 127 17.0 0110 1100 | XXXX XXXX 1 2
5 4 0 0 Count down
CcD C 1to 127 17.0 0101 0100 | XXXX XXXX 1 2

1) Theinputand output bytes (words) 64—127 (64—126) and the péripheral bytes (words) 64—127 (64—126) can be used as

the maximum peripl

heral configuration cannot exceed 64 input/output bytes.
2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO = 00result oraccu 1 =0, CC1 CCO = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value_ls too large for the accu.

additional flag bits, bytes and words, as

56

9. Total overview of STEP 5 operations

9.1 Basic operation
9.1.4 Loading and transfer functions

Condition Codes?
5|28 , 5|
Cycle Operation code f i t i 2 i S i g
Operation Parameter time (us) Byte O | Byte 1 depends on | affects Function
9.1.4 Loading and transfer functions Bﬁieé\r/;/g;d
4 A 0 0 Load input byte of process
L 1B 0to 127" 7.4 0100 1010| OXXX XXXX —— —— | inputimage into accu 1
5 2 0 0 Load input word of process —
L \%% 0to 126" 9.3 0101 0010| OXXX XXXX —_— —— | inputimage into accu 1
4 A 8 0 Load output byte of process
L QB 0to 127" 74 0100 1010| 1XXX XXXX | — —— | outputimage into accu 1
5 2 8 0 Load output word of process
L Qaw 0to 126" 9.3 0101 0010| 1XXX XXXX | — —— | outputimage into accu 1
0 A 0 0 Load flag byte into accu 1
L FB 0to 255 7.7 0000 1010| XXXX XXXX | — —_
1 2 0 0 Load flag word into accu 1
L FW 0to 254 9.3 0001 0010| XXXX XXXX | — —_—
2 A 0 0) Load datum (right-hand byte) of
L DR 1to 255 121 0010 1010 XXXX XXXX —_ —— | current data block into accu 1
2 2 0 0 Load datum (left-hand byte) of
L DL 1to 255 13.2 0010 0010| XXXX XXXX | — —— | current data block into accu 1
3 2 0 0 Load datum (word) of current
L DW 1 to 255 16.5 0011 0010| XXXX XXXX | — —— | actual data block into accu 1
0 2 0 0 Load time (binary) of
L T 1to0 127 1 0000 0010| XXXX XXXX | — — | timerinto accu 1
4 2 0 0 Load counter (binary)
L C 1t0 127 10.4 0100 0010| XXXX XXXX — —— | of counter into accu 1
7 2 0 0 Load peripheral byte of digital inputs into accu 1,
L PB 0to 127" 50 0111 0010| XXXX XXXX | — —— | bypassing the process image
7 A 0 0 Load peripheral word of digital inputs/outputs into
L PW 0to 126" 52 0111 1010 XXXX XXXX | — —— | accu 1, bypassing the process image
0 C 0 0 Load time (BCD) of timer into accu 1
LD T 1t0 127 231 0000 1100| XXXX XXXX | — —_—
4 C 0 0 Load count (BCD) of counter into accu 1
LD C 1t0127 22.8 0100 1100| XXXX XXXX | — —
4 B 0 0 Transfer contents of accu 1 into input byte
T B 0to 127" 71 0100 1011 | OXXX XXXX | — —— | of process input image
5 3 0 0 Transfer contents of accu 1 into input word
T W 0to 126" 7.7 0101 0011 | OXXX XXXX | — —— | of process input image
4 B 8 0 Transfer contents of accu 1 into output byte
T QB 0to 127" 71 0100 1011 1XXX XXXX - —— | of process outputimage
5 3 8 0 Transfer contents of accu 1 into output word
T Qw Oto 126" 7.7 0101 0011] 1XXX XXXX | — —— | of process outputimage
0 B 0 0 Transfer contents of accu 1 into flag byte
T FB 0to 255 71 0000 1011 XXXX XXXX | — —_—
1 3 0 0 Transfer contents of accu 1 into flag byte
T FW 0to 254 8.0 0001 0011 | XXXX XXXX | — —
» 2 B 0 0 Transfer contents of accu 1 into the word
T DR 1to0 255 14.3 0010 1011 XXXX XXXX —_— —— | (right-hand byte) of current actual data block
2 3 0 0 Transfer contents of accu 1 into the word
T DL 1to 255 13.2 0010 0011 XXXX XXXX —_— —— | (left-hand byte) of current data block
3 3 0 0 Transfer contents of accu 1 into the word
T DW 1to0 255 13 0011 0011 | XXXX XXXX —_— —— | of current data block
7 3 0 0 Transfer contents of accu 1
T PB 0to 127" 53 0111 0011 | XXXX XXXX | — —— | directly into peripheral byte
7 B 0 0 Transfer contents of accu 1
T PW Oto 126" 55 0111 10111 XXXX XXXX | — —— | directly into peripheral word

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO = 00 result oraccu 1 = 0, CC1 CCO = 01 result oraccu 1 less
than 0, CC1 CCO0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

57

9. Total overview of the STEP 5 operations

9.1 Basic operations
9.1.4 Loading and transfer functions
9.1.5 Comparison functions

Condition Codes”
o Q= |x
| 2l28l5]5
Cycle Operation code S CICIEA)
Operation Parameter time (us) Byte 0 Byte 1 depends on | affects Function
2 8 0 0 Load constant number (1 byte)
L KB 0to 255 5.0 0010 1000 XXXX XXXX | — — |intoaccu 1
2 ASCII- 3 0 1 0 Load constant character into accu 1
L KS* symbols 6.6 0011 0000| 0001 0000 — —
—32768 3 0 0 4 Load constant fixed-point number into accu 1
L KF* to +32767 6.6 0011 0000| 0000 0100 | — —
3 0 4 0 Load constant number (hexadecimal code)
L KH* 0to FFFF 6.6 0011 0000| 0100 0000 — — |intoaccu 1
0000...00 3 0 8 0 Load constant bit pattern of a word (2 bytes)
L KM* to111...11 6.6 0011 0000| 1000 0000 — — |intoaccu 1
0 to 255, 3 0 2 0 Load constant number (2 bytes) into accu 1
L KY* 0to 255 6.6 0011 0000| 0010 0000 —_— —_
3 0 0 2 Load constant number (2 bytes) as time
L KT* 0.0t0999.3 6.6 0011 0000| 0000 0010 - — |intoaccu 1
3 0 0 1 Load constant number (2 bytes)
L KC* 0.0to 999 6.6 0011 0000| 0000 0001 —_— —— | as counterinto accu 1
* These are 4-byte operations. The constant is in byte 2 and in byte 3.
9.1.5 Comparison functions
2 1 8 0 Fixed-point comparison for accu 2 equal to accu 1.
I=F _ 10.7 0010 0001| 1000 —_ — [1;2;3;4 | lIfequal, RLO = "1".
2 1 6 0 Fixed-point comparison for accu 2 not equal to accu
><F _ 10.7 0010 0001| 0110 — — 11;2;3;4 | 1.|funequal, RLO = "1".
2 1 2 0 Fixed-point comparison for accu 2 > accu 1. If accu
>F _ 10.7 0010 0001| 0010 — — [1;2;3;4 | 2>accu1,RLO="1".
2 1 4 0 Fixed-point comparison for accu 2 < accu 1.
<F _— 10.7 0010 0001| 0100 —_ — [1;2;3;4 | Ifaccu2 <accu1,RLO ="1".
2 1 A 0 Fixed-point comparison for accu 2 2 accu 1.
>=F _ 10.7 0010 0001| 1010 — | — |1;2,3;4|lfaccu2=accul,RLO="1".
2 1 C 0 Fixed-point comparison for accu 2 = accu 1.
<=F — 10.7 0010 0001| 1100 — |1;2;3;4 | Ifaccu2 =accu 1,RLO = ""1".
Note:

The programmable controller has two accumulators for comparison and arithmetic functions and for digital operations.
Loading means that the contents of accu 1 are transferred to accu 2 and that accu 1 is newly loaded according to the operands in the load operation. After two load
operations, information on the contents of the accumulators can be obtained with comparison operations.

Example:

L

L

IW1

\ ‘Accu1(

‘Accu2 ‘

\\ w1 |

|

w3 ‘ |——| w1
\‘ w3 | | w1

Scanning for accu 1 = accu 2

A transfer operation always transfers the contents of accu 1 to the operands specified in the transfer operation.

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO0 = 00 result oraccu 1 =0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

58

9. Total overview of STEP 5 operations
9.1 Basic operations

9.1.6 Block calis
9.1.7 Other commands
Condition Codes?
o Q= |
| HEIEE
Cycle Operation code =T <o
Operation Parameter time (us) Byte O | Byte 1 depends on | affects Function
9.1.6 Blocks calls Word
o) address
7 5 0 0 Jump unconditionally to program block
Ju PB 0to 127 24.8 0111 0101 XXXX XXXX | — 2
: 3 D 0 0 Jump unconditionally to function block
Ju FB Oto 47 25.6 0011 1101 | XXXX XXXX | — 2
5 5 0 0 Jump conditionally to program block
iC PB O0to 127 25 0101 0101 | XXXX XXXX 1 1,2
1 D 0 0 Jump conditionally to function block
]C FB Oto 47 26 0001 1101 | XXXX XXXX 1 1,2
2 0 0 0 Call data block; the data block is valid until another
C DB 1to 63 8.8 0010 0000 | XXXX XXXX | — —— | data block has been called.
6 5 0 o0 End of block
BE e 18.4 0110 0101| 0000 0000 — 2
6 5 0 1 Unconditional end of block — may be programmed
BEU _ 18.4 0110 0101| 0000 0001 —_— 2 several times within a block
0 5 0 0 Conditional end of Vblo‘ck
BEC _ 18.6 0000 0101| 0000 0000 1 1,2 |RLO="1"
9.1.7 Other commands
0 0 0 0
NOP 0 _ 35 0000 0000| 0000 0000 — —— | No operation (all bits deleted)
F F F F
NOP 1 _ 3.5 1111 1M1 111 111 —_ —— | No operation (all bits set)
7 0 0 3 Programmable stop operation (at the end of the
STP 6.0 0111 0000| 0000 0011 — —— | cycle, the programmable controller stops)

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO0 = 00result oraccu 1 =0, CC1 CCO = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

59

9. Total overview of STEP 5 operations
9.2 Supplementary operations
9.2.1 Binary logic functions

Condition codes?

) Ol=|3|o|g
Cycle Operation code 2/ T|O|Q|0
time Byte 0 Byte 1 —lalmol<]w
Operation Parameter (us) Byte 2 Byte 3 Depends on | Affects | Function *
9.2.1 Binary logic function
Bit Word
address address
7 0 4 6 Test bit of the data word for 1"
0111 0000 | 0100 0110
C 0 0 0
B DW? 1.0to0 255.15 22.7 1100 XXXX | XXXX XXXX | — 1,2
7 0 1 5 Test bit of the counter word for "1
0111 0000 | 0001 0101
C 0 0 0
B cY 1.0to 127.15 21.2 1100 XXXX | XXXX XXXX | — 1,2
7 0 2 5 Test bit of the timer word for 1"’
0111 0000 | 0010 0101
C 0 0 0
8B T 1.0t0 127.15 21.2 1100 XXXX | XXXX XXXX | — 1,2
7 0 4 6 Test bit of the data word for "0
0111 0000 | 0100 0110
8 0 0 0
TBN DW?¥ 1.0to 255.15 225 1000 XXXX | XXXX XXXX | — 1,2
7 0 1 5 Test bit of the counter word for "’0"
0111 0000 | 0001 0101
8 0 0 0
TBN cY 1.0t0 127.15 21.0 1000 XXXX [XXXX XXXX | — 1,2
7 0 2 5 Test bit of the timer word for 0"
0111 0000 | 0010 0101
8 0 0 0
TBN ™ 1.0t0 127.15 21.0 1000 XXXX | XXXX XXXX | — 1,2
7 0 4 6 Set bit of data word unconditionally to "1
0111 0000 | 0100 0110
4 0 0 0
SuU DW? 1.0to 255.15 227 0100 XXXX | XXXX XXXX | — 2
7 0 1 5 Set bit of counter word unconditionally to 1"
0111 0000 | 0001 0101
4 0 0 0
SuU cd 1.0t0 127.15 21.2 0100 XXXX | XXXX XXXX | — 2
7 0 2 5 Set bit of timer word unconditionally to "' 1"
0111 0000 | 0010 0101
4 0 0 0
SuU T 1.0t0 127.15 21.2 0100 XXXX | XXXX XXXX | — 2
7 0 4 6 Set bit of data word unconditionally to "0
0111 0000 | 0100 0110
0 0 0 0
RU DW?® 1.0 to 255.15 225 | 0000 XXXX | XXXX XXXX | — 2
7 0 1 5 Set bit of counter word unconditionally to 0"
0111 0000 | 0001 0101
0 0 0 0
RU c? 1.0t0 127.15 21,0 | 0000 XXXX | XXXX XXXX | — 2
7 0 2 5 Set bit of timer word unconditionally to ’0”
0111 0000 | 0010 0101)
0 0 0 0
RU T 1.0t0 127.15 21.0 | 0000 XXXX | XXXX XXXX | — 2

2 RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO = 00resultoraccu 1 =0, CC1 CCO = 01 result oraccu 1 less

than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) =

3 These are 4-byte-operations.

means in the case of arithmetic statements that the value is too large for the accu.

60

9. Total overview of STEP 5 commands
9.2 Supplementary operations

9.2.2 Digital logic functions

9.2.3 Arithmetic functions

9.2.4 Jump functions

9.2.5 Timer and counter functions

Condition Codes?
2|2[8|5(8
Cycle Operation code S CACAEAE
Operation Parameter time (us) Byte O | Byte 1 depends on | affects Function
9.2.2 Digital logic functions
4 1 0 0 Digital ANDing of accu 1 and accu 2 (word forword);
AW _ 6.0 0100 0001 — 3;4 result stored in accu 1;
4 9 0 0 Digital ORing of accu 1 and accu 2 (word for word);
oW _ 8.2 0100 1001 —_ 3;4 result stored inaccu 1;
5 1 0 0 Digital EXORing of accu 1 and accu 2 (word for
XOW —_— 6.5 0101 0001 —_ 3;4 word); result stored in accu 1;
9.2.3 Arithmetic functions
7 9 0 0 Add accu 1 to accu 2; result stored inaccu 1;
+F _ 9.9 0111 1001 — | 345
5 9 0 0 Subtractaccu 1 from accu 2; result stored in accu 1;
-F R — 121 0101 1001 — | 34,5
X ion Wordaddress
9.2.4 Jump functions farrs
""Label” 2 D 0 0 Jump unconditionally to label, consisting of 4 ASCII
U= (4 ASClI-symbols) 9.9 0010 1101 | XXXX XXXX | — —— | symbols. Jump displacement < + 127 words.
"Label” F A 0 0 Jump conditionally (if RLO = “1"') to label,
IC= (4 ASCll-symbols) 10.4 1M1 1010 | XXXX XXXX 1 1,2 | consisting of 4 ASCIl symbols.
Jump displacement < + 127 words.
“Label” 1 5 0 0 Jump conditionally (if result > zero) to label,
= (4 ASClI-symbols) 10.4 0001 0101 | XXXX XXXX 3;4 —— | consisting of 4 ASCII symbols.
Jump displacement < +127 words.
""Label” 2 5 0 0 Jump conditionally (if result < zero) to label,
M= (4 ASCll-symbols) 10.2 0010 0101 | XXXX XXXX 3,4 —— | consisting of 4ASCII symbols.
Jump displacement < + 127 words.
""Label” 4 5 0 0 Jump conditionally (if result = zero) to label,
JZ= (4 ASCII-symbols) 10.4 0100 0101 | XXXX XXXX 3,4 —— | consisting of 4 ASCII symbols.
Jump displacement < + 127 words.
""Label” 3 5 0 0 Jump conditionally (if result # zero) to label,
IN = (4 ASCll-symbols) 10.4 0011 0101 | XXXX XXXX 3;4 —— | consisting of 4 ASCII symbols.
Jump displacement < + 127 words.
""Label” 0 D 0 0 Jump conditionally (if condition code OVR = 1) to
JO = (4 ASClI-symbols) 10.4 0000 1101 | XXXX XXXX 5 —— | label, consisting of 4 ASCII symbols.
Jump displacement = + 127 words.
9.2.5 Timer and counter functions
Wordaddress
0 4 0 0 Enable timer for cold restart (only on positive-going
FRT 0to 127 8.8 0000 0100 | XXXX XXXX 1 2 edge of RLO)
4 4 0 0 Enable counter for cold restart (only on positive-
FRC 0to 127 8.8 0100 0100 | XXXX XXXX 1 2 going edge of RLO)

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result oraccu1 =0, CC1 CC0 = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

61

9. Total overview of STEP 5 commands

9.2 Supplementary operations
9.2.6 Shift functions

9.2.7 Conversion functions

9.2.8 Decrementing/incrementing

9.2.9 Process function

9.2.10 Disable/enable command output
9.2.11 Disable/enable interrupts

Condition Codes?

9|23 } SYE:
. |- 10|0 |0
Cycle Operation code S CIEAEAE
Operation Parameter time (us) Byte O Byte 1 depends on | affects Function
9.2.6 Shift functions | Par.
6 1 0 0 Shift contents of accu 1 to the left.
SLW 0to 15 — 0110 0001 | 0000 XXXX —_— 3;4 | The bit positions to the right which become vacant
are padded with zeros.
6 9 0 0 Shift contents of accu 1 to the right.
SRW 0to 15 — 0110 1001| 0000 XXXX | — 3;4 | The bit positions to the left which become vacant
are padded with zeros.
9.2.7 Conversion functions
0 1 0 0 One’s complement of accu 1
CFW _ 47 0000 0001 — —_—
0 9 0 0 Two's complement of accu 1;
CSW _ 8.2 0000 1001 —_ 3,4
9.2.8 Decrementing/incrementin Dec./Inc.
e 9 9 0t0 255
1 9 0 0 Decrement only the low byte
D 110255 5.7 0001 1001 | XXXX XXXX —_ —— | of accu 1 by a particular value.
1 1 0 0 Increment only the low byte
| 1to0 255 4.4 0001 0001 | XXXX XXXX | — —— | of accu 1 by a particular value.
9.2.9 Process functions
Wordaddress
4 E 0 0 Process flag word. The next operation specified is
DO FW4 0to 254 9.9 0100 1110 XXXX XXXX | — | —— | combined with the paramter in the flag word and
. executed.
6 E 0 0 Process data word. The next operation specified is
DO DW4 0to 255 12.1 0110 1110 XXXX XXXX | — —— | combined with the parameter in the data word and
executed.
9.2.10 Disable/enable command output
B E 0 0 Disable command output
BAS _ 5.5 1011 1110 1 —
F E 0 0 Enable command output
BAF _ 5.2 111 1110 1 ——
9.2.11 Disable/enable interrupts
0 8 0 0 Inhibit interrupt processing
1A _— 5.0 0000 1000| 0000 0000 — —
. 0 8 8 0
RA _ 5.0 0000 1000{ 1000 0000 — —— | Enable interrupt processing

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO = 00 result oraccu 1 = 0, CC1 CC0 = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

4) These are four byte statements; the operation code is in byte 2, the parameters of the Statement to be executed are in byte 3.

62

9. Total overview of STEP 5 commands

9.2 Supplementary operations
9.2.12 Substitution functions

Condition codes?

o 8lgle
Cycle Operation code 4 z 8 8 5
time Byte 0 Byte 1 —[~lwl<l»
Operation Parameter (us) Depends on | Affects | Function *
6.2.12 Substitution functions Parameter
address (hex.) AND/OR logic functions
Formal operand 0 7 0 0 AND function; scan formal operand for 1"
A (4 ASCll characters) X+14.6% 0000 0111 | 00XX XXXX 2 1;2
Formal operand 2 7 0 0 AND function; scan formal operand for "’0”
AN (4 ASClI characters) X+14.29| 0010 0111 | 00XX XXXX 2 1;2
Formal operand 0 F 0 0 OR function; scan formal operand for ""1”
O (4 ASCll characters) X+14.29 0000 1111 | 00XX XXXX 2 1;2
Formal operand 2 F 0 0 OR function; scan formal operand for 0"’
ON (4 ASClI characters) X+14.29 0010 1111 | 00XX XXXX 2 1;2
Setting functions
Formal operand 1 7 0 0 Set (binary) formal operand to "’1”
S (4 ASCli characters) X+14.29 0001 0111 | 00XX XXXX 1 2
Formal operand 1 F 0 0 Set formal operand (restricted to "1"’)
= (4 ASCIlI characters) X+14.29 0001 1111 | 00XX XXXX 1 2
Formal operand 3 7 0 0 Set (binary) formal operand to "0
RB (4 ASClI characters) X+14.291 0011 0111 | 00XX XXXX 1 2
Formal operand 3 E 0 0 Set (digital) formal operand to 0"
RD (4 ASCII characters) X+14.29 0011 1110 | 00XX XXXX 1 2 [operands T and C}
Load and transfer functions
Formal operand 4 6 0 0 Load formal operand.
L (4 ASClI characters) X+15.5% 0100 0110 | 00XX XXXX — —— | Thevalue of the operand specified as formal operand
is loaded into accu 1 [operands IB, IW, FB, FW, QB,
QW, DR, DL, DW, PB, PW].
Formal operand 0 E 0 0 Load formal operand in BCD code.
LD (4 ASCII characters) |X+6.8% | 0000 1110 | 00XX XXXX —_— —— | The value of the timer or counter location specified
as formal operand is loaded into accu 1 [operands
T, Cl.
Formal operand 3 F 0 0 Load the bit pattern of a formal operand into accu 1
LW (4 ASCli characters) | 8.5 0011 1111 | 00XX XXXX | — —— | [operands KB, KS, KF, KH, KM, KY, KT, KC].
Formal operand 6 6 0 0 Transfer to a formal operand.
T (4 ASCll characters) X+14.59 0110 0110 | 00XX XXXX | — —— | Thecontentsofaccu 1 are transferred to the operand
specified as formal operand [operands IB, IW, FB,
FW, QB, QW, DR, DL, DW, PB, PW].

2 RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO0 = 00result oraccu 1 =0, CC1 CCO0 = 01 result oraccu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9 X sngnlfles the cycle time of the command to be substituted.

63

Total overview of STEP 5 commands

9.2 Supplementary operations
9.2.12 Substitution functions

Condition codes?

(@] |
Cycle Operation code = % 8 8 ‘ 8
time Byte 0 Byte 1 —[aTmwl<Tw
Operation Parameter (us) Depends on | Affects | Function *
Parameter
address (hex.) Timer/counter functions
Formal operand 3 6 0 0 Start timer specified as formal operand with the
SP (4 ASCll characters) |[X+5.59 | 0011 0110 | 00XX XXXX 1 2 value stored as pulse
[operand T].
Formal operand 1 E 0 0 Start timer specified as formal operand with the
SEC (4 ASCII characters) |X+6.79 | 0001 1110 | 00XX XXXX 1 2 value stored as extended pulse or set counter speci-
fied as formal operand with the count specified
[operands C, T].
Formal operand 2 6 0 0 Start timer specified as formal operand with the
Sl (4 ASCll characters) |X+5.69 | 0010 0110 | 00XX XXXX 1 2 value stored as “on’’ delay [operand T].
Formal operand 1 6 0 0 Start timer specified as formal operand with the
SFD (4 ASClI characters) |X+6.8% | 0001 0110 | 0OXX XXXX 1 2 value stored as stored “off”” delay or decrement
counter specified as formal operand [operands C,
T].
Formal operand 2 E 0 0 Start timer specified as formal operand with the
SSuU (4 ASCll characters) |X+6.8% | 0010 1110 | 00XX XXXX 1 2 value loaded as stored “on’’ delay or increment
counter specified as formal operand [operands C,
T].
Formal operand 0 6 0 0 Enable formal operand for cold restart
FR (4 ASClI characters) [X+6.89 | 0000 0110 | 00XX XXXX 1 2 [operands C, T].
Processing function
Formal operand 7 6 0 0 Process formal operand.
DO (4 ASCll characters) |X+8.5%| 0111 0110 | 00XX XXXX | — —— | Only C DB, JU PB, and JU FB can be substituted.

2 RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CCO = 00 result oraccu 1 =0, CC1 CCO0 = 01 result or accu 1 less
than 0, CC1 CCO = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9 X signifies the cycle time of the command to be substituted.

64

SIEMENS AKTIENGESELLSCHAFT Order No. GWA 807 2122-02

Printed in West Germany

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

