
Programmable Controllers
SIMATIC SS-IIOSIB

Programming Instructions

SIEMENS

SlMATlC S5-11OSIB

Programmable Controllers

Programming Instructions Order No.: GWA4NEB 807 2122-02

S5-11 OS Programmable controller: CPU (left), peripherals (right) and the 670 programming unit (foreground)

Contents: Page

1. Introduction
1 . l Application
1.2 STEP 5 programming language
1.3 Programming
1.3.1 Program structure
1.3.2 Program organisation
1.3.3 Program processing
1.4 General notes

2. Program blocks
2.1 Programming program blocks
2.2 Calling program blocks

3. Data blocks
3.1 Programming data blocks
3.2 Calling data blocks

4. Function blocks
4.1 General
4.2 Structure
4.3 Calling function blocks for parameter assignment
4.4 Generation of function blocks
4.5 Standard function blocks

5. Organisational tasks
5.1 General
5.2 Overview
5.3 Programming cyclic processing
5.3.1 Interface between the system program and

cyclic processing
5.3.2 Rough organisation of the program
5.4 Programming of interrupt-driven processing

(servicing a process interrupt)
5.5 Start-upand restart procedure
5.6 Evaluation of device errors and exception conditions

6. Programming examples
6.1 Basic operations (program and data blocks)
6.1.1 Binary logic functions
6.1.2 Settingfresetting functions
6.1.3 Loading and transfer functions
6.1.4Timerfunctions
6.1.5 Counter functions
6.1.6 Comparison functions
6.2 Supplementary operations (function blocks)
6.2.1 Binary logic functions
6.2.2 Digital logic functions

6.2.3 Arithmetic functions
6.2.4 lump functions
6.2.5Timerand counter functions
6.2.6 Shift functions
6.2.7 Conversion functions
6.2.8 Decrementingfincrementing
6.2.9 Disablefenable command output
6.2.10 Disablefenable interrupts
6.2.1 1 Processing functions
6.2.1 2 Substitution functions

7. Rules governing compability between the LAD,
CSF and STL methods of representation 42

7.1 General 42
7.2 Rules governing compatibility between the graphic methods 43
7.2.1 Input in LAD, output in CSF (STL) 43
7.2.2 Input in CSF, output in LAD (STL) 43
7.3 Rules governing compatibility between the

STLand graphic methods 44

8. Notes on estimating the required memory space 54

9. Total overview of STEP 5 operations
9.1 Basicoperations
9.1.1 Binary logic operations
9.1.2 Settingfresetting operations
9.1.3 Timer and counter operations
9.1.4 Loading and transfer functions
9.1.5 Comparison functions
9.1.6 Blockcalls
9.1.7 Other commands
9.2 Supplementary operations
9.2.1 Binary logic functions
9.2.2 Digital logic functions
9.2.3 Arithmetic functions
9.2.4 lump functions
9.2.5Timer and counter functions
9.2.6 Shift functions
9.2.7 Conversion functions
9.2.8 Decrementingfincrementing
9.2.9 Processing function
9.2.1 0 Disablefenable command output
9.2.1 1 Disablefenable interrupts
9.2.12 Substitution functions

1. Introduction
1.1 Application

1.2 STEP 5 programming'language
1.3 Programming

1. Introduction

1 .l Application

The S5-110s is a powerful programmable controller for process
automation (logic control, monitoring, listing, signalling). It is suit-
able both for the simplest control applications with binary signals
and for the solution of complicated automation tasks. Its user
programs are written in the STEP 5 programming language.

1.2 STEP 5 programming language

The operation set of the STEP 5 programming language makes it
possible to program functions ranging from simple binary logic to
complex digital processing.
Depending on the programming unit used, the program can be
written in three different methods of representation, ladder diagram
(LAD), control system flowchart (CSF) and statement list (STL) (Fig.
l), so that the programming method can be adapted to the applica-
tion. The machine code produced by the programming units is iden-
tical for all three methods of representation. If certain programming
rules are followed (see "Rules governing compatibility between the
LAD, CSF and S IL methods of representation", p. 41), the 6701675
programming unit can translate the statement program from one
method of representation to another.

Ladder diagram Statement list

Programming with
graphic symbols as
in schematic circuit

diagram
to
DIN 19239 (draft)

Programming with
mnemonics of the function
designations

to
DIN 19239 (draft)

Fig. 1 Methods of representation in the STEP 5 programming language

1.3 Programming

1.3.1 Program structure

The structure of the S5-11 OS programmable controller compels the
user to adopt structured programming techniques, i.e. the program
is divided into individual-self-contained program sections (blocks).
This method offers the user the following advantages:
simple and clear programming, even of larger programs,
standardization of program sections possible,
simple program organization,
easy program modification,
simple program testing,
simple start up.
Three types of block, each of which has different tasks, can be used
to contruct the user program:

Program blocks (PB)

These are used to divide the user program into technology-oriented
program sections.

Function blocks
.--pp

These are used to program complex repetitive functions (e. g. indivi-
dual open-loop control, alarm and arithmeticfunctions) and the pro-
cessing of sequence cascades.

Data blocks (DB)
P-

These are used to store data and text.

Control system
flowchart
.- - --. -

Programming with
graphic symbols

to
IEC 117-15
DIN 40700
DIN 40719
DIN 19239 (draft)

The maximum number of programmable blocks is
- 128 program blocks
- 48 function blocks
- 63 data blocks (without DB 0).

No block should exceed 256 statements.
All programmed blocks are stored by the programming unit in the
program memory in random order (Fig. 2). An organisation block
which is also programmed by the user, determines the sequence in
which the blocks are to be processed.

Fig. 2 Location of the blocks in the program memory in random order

1. Introduction

1.3 Programming
1.3.2 Program organisation

1.3.2 Program organisation

The organisation block determines whether and in which sequence
the program, function and data blocks are to be processed (Fig. 3).
The corresponding calls (conditional or unconditional) for the
blocks required are written in the organisation block 1 (OB 1) (see
"Organisational tasks", p. 11).

Organisation block 1 is also located in the program memory, as are
the other blocks.

The user can program function block 0 to determine his reaction to
interrupts (see p. 15).

The program and function blocks can call up further program and
function blocks in any desired combination. The maximum per-
missible nesting depth is 8 blocks, incl. organisation block, but not
including any data blocks used (Fig. 4).

OB Organisation block
PB Program block
FB Function block
DB Data block

- Program processing

Fig. 3 Program organisation in the STEP 5 programming language

Fig. 4 Example of a program structure taking advantage of the maximum nesting depth

1. Introduction

1.3 Programming
1.4 General notes

1.3.3 Program processing

The user program can be processed in three different ways (Fig. 5).

Cyclic processing ..

Organisation block l is provided for the cyclic processing of the
user program. This block executes cyclically and calls the blocks
programmed in the user program. The maximum cycle time is 270
ms. After this, the cycle time monitoring reacts.

Interrupt-driven-program processis

With this type of processing, cyclic program processing is inter-
rupted, depending on 32 input signals, at each block change. Func-
tion block 0 (FBO) is provided for interrupt processing.

Time-controlled program process%

With this type of program processing, certain program or function
blocks are inserted into the cyclic program processing in a freely
selectable time grid. The average user program cycle time can be re-
duced with this programming option.

Time-controlled blocks are not called up automatically, as with the
S5 - 150 A/K controller, but are executed as required by the user.

Note:

When programming on the time base of 10 ms, make sure that the
processing time of each individual block is < 10 ms since the times
are only processed at block boundaries!

P0

Cyclic

I Interrupt-
driven

11 Breakpoint at which interrupt-driven or time-controlled program processing can be
inserted

Fig. 5 Types of program processing

Example of time-controlled program processing

1.4 General notes

If standard function blocks are used, the flag bytes 200 to 255 are
reserved and are not available to the user.

Timer 0, counter 0 and data block 0 are also reserved.

If the 333 C service unit is used, function block 1 and data block 1 are
reserved. Function blocks 2,3,4,5,6 and data block 2 are reserved
for the 51 2 interface module. Data word 0 of all data blocks cannot
be used.

Standard function blocks use block numbers 1 to 12. User function
blocks therefore can only use block numbers 13 to 47.

Programming blocks can be programmed in all three methods of re-
presentation (STL, LAD, CSF) with the basic operation set of the
STEP 5 programming language.

Note:

Programming of data words outside the relevant block can lead to
the controller entering an undefined state (Data word No. > data
block length).

The following programming errors cause the programmable con-
troller to go into stop state:

1. Programming a STEP 5 operation not in the 11 0 S controller's
operation set.

2. Programming a call for an illegal block (No. too large).

3. Selection of a data word (LDW, TDW) without previous selection
of data block (CDB).

4. Exceeding the permissible nesting depth.

2. Program blocks

3. Data blocks

2. Program blocks

2.1 Programming program blocks
The programming of a program block (PB) begins by assigning a C

block number between 0 and 127 (example: PB 25). This is followed
by the actual control program, which ends with the "BE" statement.
A program block should not contain more than 256 statements (in-
cluding "BE") (see Fig. 6). The block header, which the programming
unit automatically generates for the program block, takes up five 25:

t Block header

words in the program memory.
Fig. 6 Structure of a program block

A program block should always contain a complete program.
Chaining beyond the block limits is not possible.

2.2 Calling program blocks
Processing of a program block is enabled by block calls (Fig. 7)
which can be written in organisation, program or function blocks.
Block calls can be compared to jumps to a subroutine and can
therefore be called either unconditionally (1U PB X) or conditionally,
i. e. depending on the result of a logic operation (1C P8 X).

After the "BE" statement, control is returned to the block containing
the block call. The result of the logic operation can no longer be
processed after the block call or after "BE". The result of the logic
operation is taken into the "new" block, however, and can be
evaluated (see 'Interrupt processing', p. 15).

Unconditional ..~ call: --

The program block addressed is processed independently of the
result of the previous logic operation.

Conditional call:

The program block addressed is processed dependent on the result
of the previous operation.

3. Data blocks

3.1 Programming data blocks

Data blocks (DB) are used to store data required by the user pro-
gram.

Data may consist of:

- Any desired bit pattern, e.g. for equipment statuses

- Numbers (hexadecimal, binary, decimal), e.g. for timers or calcu-
lation results

- Alphanumeric characters, e.g. for message texts.

Data blocks are built up like program blocks. Programming starts by
specifying a data block number between 1 and 63 (e.g. DB 25). Each
data block can consist of up to 256 data words.(l6 bits) (Fig. 8).
Data must be entered in the ascending order of the data words, be-
ginning with data word 0, whereby data word 0 (DW 0) cannot be
used by the user, as it is required as a buffer for certain function
blocks.

PB 1 Pi3 5 PE 10

Fig. 7 Block calls which enable program block processing

DWO
DW l
DWZ
DW3
DW4
DW5

DW255

Fig. 8

1 Block headei

i Data words
1 - 255

i
Structure of a data block

One memory word is provided per data word in the user memory. A
block header occupying a further five words in the user memory is
generated by the programming unit for each data block.

3. Data blocks

3.2 Calling data blocks : C DB10

Data blocks (DB) can only be called unconditionally. The call re- : L DWl rh
mains valid until a new call is made. : C DB 20

: T DW1
The data block call can be programmed within a program block or
function block.

DW255 ' l
Example:

00 20
Transferring the contents of data word 1 of data block DB 10 to data DWO I- I
word 1 of data block DB 20 (Fig. C

Fig. 9 Calling a data block

If a program block in which a data block has already been addressed
calls a further program block and another data block is addressed in
this block, this data block is only valid in the program block called.
After control is returned to the calling program block, the old data
block becomes valid once more (Fig. 10).

Data block DB 10 is called in program block PB 7. The data in this
data block are then processed.

Afterthe call, program block PB 20 is processed. Data block DB 10 is
still valid, however. The data area only changes when data block DB
11 is called. Data block DB 11 is now valid up to the end of program
block PB 20.

Data block DB 10 becomes valid again when the block changes
back to program block PB 7.

Note:

If a data load or transfer command is programmed with a data word
number > block length, this can lead to the controller entering an
undefined state.

E x a ~ h .. .-

Data block 10 is loaded with 10 data words, with the TDW l l opera-
tion a memory word is overwritten outside the block (Fig. 11).

The processing of a data load or transfer operation without
previous data block call causes the controller to stop.

Fig. 10 Calling a data block within another data block

Fig. 11 Fatal programming error

4. Function blocks
5.1 General
4.2 Structure
4.3 Calling function blocks for parameter assignment
--p--

-- - - . -- - -

4. Function blocks

4.1 General
Like program blocks, function blocks are part of the user program.
They differ in four main ways from program blocks:

Function blocks can be assigned parameters, i.e. the actual
operands with which a function block is to operate can be specified.

Function blocks can be programmed with an extended operation set
compared with program blocks.

The function block program can only be written and documented as
a statement list.

Afunction block call is represented graphically as a black box.

A function block is a complex, complete functional entity within a
user program. It can either be obtained from Siemens as a software
product ("Standard function blocks" on mini-diskette) or pro-
grammed by the user himself. The supplementary operations (see p.
20) can only be programmed in function blocks.

4.2 Structure
A function block consists of a block header and block body (Fig. 12).

Block header

The block header contains all the information required by the pro-
gramming unit for graphic representation of the function block and
for checking the operands when initialising the function block.
Before the function block is programmed, this block header is
entered by the user (with the aid of the programming unit) (see
"Generation of function blocks", p. 9).

Block header
with information
for the programming unit

I
Block body with
the STEP 5 program

J
Fig. 12 Structure of a function block

Block body

The block body contains the actual program of the function block.
The function to be executed is described by the STEP 5
programming language and deposited in the block body. Only the
block body is processed when the function block is called. An
extended operation set (compared with the basic operations) is

available for programming function blocks (see "Supplementary
operations", p. 35).

4.3 Calling function blocks for parameter
assignment

Repetitive or very complex functions are implemented by function
blocks (FB). They are present only once in the program memory and
are called once or several times by a superordinate block. These
function blocks can be assigned different parameterseach time they
are called.

A = X1
A = X2

.- -p-

Actual parameter

: A 15.2

: l U +4

4

Fig. 13 Parameter assignment of a function block
.

8

4. Function blocks

4.4 Generation of function blocks

Like the program and data blocks, the function blocks are located in
the program memory under a certain designation (FB 1 to FB 47).
User function blocks should be addressed in descending order from
F5 47, so as not to collide with the standard function blocks which
have the addresses from F5 1 to F5 12.

A function block call can be written within a program block or
another function block. The call comprises the call statement and
the parameter list.

Call statement
pp - -. - --

3U FBn unconditional call
JC FBn conditional call

Unconditional call:
-p--.--...

The function block addressed is processed regardless of the result
of the previous logic operation.

Conditional call: - -- . - -

The function block addressed is only processed if the result of the
previous logic operation "RLO" = 1.

Pat ameterl~st

The parameter list IS situated drrectly after the call statement (Ftg
13) The input and output variables and data are def~ned In it (see
"Block parameter type") The parameter list can contarn a maximum
of 40 variables.

When processing the function block, the variables from the para-
meter list are used instead ot formal parameters. The sequence ofthe
variables in the parameter list is monitored by the programming unit.

The jump statement after the FB call is automatically inserted by the
programming unit, but not displayed when read out.

The FB call occupies two words in the program memory, and each
parameter a further memory word.

The memory requirements of the standard function blocks and their
runtimes are given in Catalog ST 56.

The qualifiers for inputs and outputs of the function blocks which
appear on the programming unit when programming, and the name
of the block are stored in the block itself. For this reason, all function
blocks required must be transferred to the program mini floppy disk
or entered directly into the program memory of the programmable
controiler before starting to program with the programming unit.

4.4 Generation of function blocks
The function blocks are generated in two parts, corresponding to
the structure of a function block:

Entering a) the block header and b) the block body.
The block header must be entered before the bloclc body (STEP 5
program). The block header contains:

the library number

Library number -

A number between 0 and 65535 can be specified. This number is
assigned to the function block, regardless of its symbolic or absolu-
te parameters.

A library number should only be specified once to enable a certain
function block to be uniquely identified. Standard function blocks
have a product number.

Function blockname -- - .-

The name given to the function block can be up to eight characters
long. It is different from the system identifier.

 formal.^-perand Cnam_e__ojjh-e block param-ete$

The formal operand can be up to four characters long and must start
with a letter.

A maximum of 40 parameters can be programmed for each function
block.

Nocl< p a r a m e t e z m

"I", "Q", "D", "B", "T" or "C" can be entered as block parameter

type.

I = Input parameter
Q = Output parameter
D = Data
B = Block
T =- Timer
C = Counter

"1, D, B, T" or "C" are parameters which appear on the ieft of the
function symbol in graphic representation. "Q" parameters are
shown on the right of the function symbol in graphic re'presentation.

Parameter -pp assignment

Operations (substitution commands) which are to be assigned
parameters are programmed in the function block with formal
operands. The formal operands can be addressed several times In
different parts of the function block.

ExampLe-Prowam rn thef_un_c_t~n__bl&

NAME EXAMPLE
DES ANNA IIQI DIBITIC I BI/BY/W/D B1
DES BERT I/Q/D/B/T/C I BI/BY/W/D %I
DES WANS I/Q/D/B/T/C Q BI/BY/W/D BI

T--
l

A =ANNA
A = BERT
= =HANS

Formal operand Parameter type Data type

the name of the function block

Formal operands (names of the block parameters)

Block parameter type

Block data type.

4. Function blocks

4.5 Standard function blocks

Function block call

STL LADICSF

: I U FB 202 FB 202
NAME : EXAMPLE
ANNA : 1 13.5 1 13.5 - - ! ANNA HANS ! -- Q 23.0

BERT : F 17.7 F 17.7 -- ! BERT !

HANS : Q 23.0

Formal operands U
Formal o~erands

Block parameter type and data type with permitted actual parameters

Type of Type of data
parameter I

Executed program

Actual parameters

Permitted actual parameters

B I for operands with bit addresses

BY for operands with byte addresses

W for operands with word addresses

KM for a binary pattern (16 digits)
KY for two byte-serial numbers in the range of 0 to 255 each
KH for a hexadecimal pattern (max. 4 characters)
KS for a symbol (max. 2 alphanumeric characters)
KT for a time (in BCD code) with time base 1 .O to 999.3
KC for a count (BCD) 0 to 999
KF for a fixed-point number in the range from - 32768 to

+ 32767
- - -.-p--. -- .-p--.

N o d a f a l y p e permissible

I n.m Inputs
Q n.m Outputs
F n.m Flags

IB n Input bytes
QB n Output bytes
FB n Flag bytes
DL n Data bytes left
DR n Data bytes right
PB n Peripheral bytes

IW n Input words
AW n Output words
FW n Flag words
DW n Data words
PW n Peripheral words

Constants

DB n Data blocks; the CDBn command is executed
FB n Function blocks (only ermitted without parameters) are

called unconditionally &J..n)
PB n Program blocks are called unconditionally (lU..n)

No data type permissible

-.p

/ No data type permissible

Timer; the time must be assigned parameters as data or
must be programmed as a constant in the function block

Counter; the counter must be assigned parameters as
data or must be programmed as a constant in the function
block

4.5 Standard function blocks

The following constraints apply when using standard function
blocks from the ST56 Catalog with the 110s PC:

The FB30, F635 and F636 standard function blocks for the 333C
service unit cannot run on the 11 OS PC. The standard function block
specially developed for use with the 110s or 130W PCs must be
used.

The standard function blocks for sequence controls (F670 - FB75)
cannot be used on the 1 ?OS, as sequence blocks cannot be pro-
grammed on the l l OS.

For message functions only the function blocks F650 - F656 can be
used for sending messages to the process peripherals. The F664 -
F669 function blocks for messages to the standard peripherals
cannot be used.

Supplying the standard interface (512C interface module) with
function blocks FB120 - FBI29 is not possible. The interface
modules specially developed for the 110s and 130W PCs must
continue to be used.

For closed-loop control with the 110s PC a special software
package has been developed.

When using standard function blocks, care must be taken to load
blocks with numbers greater than 47 with a block number 5 47, as
the 110s has a maximum capacity of only 47 function blocks (FBI -
FB47).

5. Organisational tasks

5.1 General

5. Organisational tasks

5.1 General
The full program of a programmable controller consists of the
system program and the user program (Fig. 14). The syslem pro-
gram is made up of all statements and declarations concerning the
internal hardware operating functions (e.g. saving data when the
power fails). This program is an integral part of the programmable
controller (EPROM) and cannot be changed by the user. The user
program consists of all user-programmed statements and declara-
tions for the signal processing affecting the control of the system
(process) to be controlled. Organisation block 1 constitutes the
interface between the system program and the user program.

Like the program or function blocks, organisation block 1 (OB 1) is
also part of the user program. However, organisation block 1 is only
called by the system program. A user cannot call organisation
block 1. OB 1 controls cyclic processing of the user program.

A programmed reaction of the user to device errors andcontrol of
the user program processing mode by further organisation blocks,
as is the case with the 150 A/K programmable controller, is not
possible.

- Cyclic processing by programming OB l (see p. 12).
- Interrupt-driven processing by programming F50 (see p. 12 and

15).
- Time-controlled processing programmed directly in the user pro-

gram (see p. 5).

Cold restart and initial start
p----p

Initiated by controls on the central processing module ('Run' switch,
reset button).
- Cold restart-manual (see p. 18).
- Cold restart-manual with reset (see p. 18).

- Cold restart-automatic (see p. 18).

Handlina device errors --

Device errors bring the controller into the stop state.
- Memory errors
- Battery failure on cold restart

- Time-out
- Cycle time exceeded

Exception conditions

System
program

User program

OB 1 = Organisation block I
PB = Program block
FB = Function block

Fig. 14 Entire program of programmable controlle~

Exception conditions bring the controller into the stop state.
- Statement not decodable (p. 19).
- Illegal block (p. 19).
- Data block not available (p. 29).

- Block stack overflow (p. 19).

5. Organisational tasks

5.2 Overview
5.3 Programming cyclic processing

5.2 Overview Cold restart and initial start

Process~ng
program

OB for cyclic processing

Def~ned In
operating
system

--.. -..--pp--- ~ ~ - - -

OB l 1 Program start
- - - . - - - - -

FB for interrupt-driven processing

Time-controlled processing
- - - p

Def~ned ~n select (random)
user program t~me grid

-

FE 0

p-

Cold restart-manual
Cold restart-manual with reset
Cold restart automatic after
power failure

- -- p p --
p -

- p - -

Signal state change at
100 1160 1320 1480
l 0 1 I I G Z 1321 l481
102 1162 1322 1482
103 1163 1323 1483
l 0 4 1164 1324 1484
105 1165 1325 1485
106 1166 1326 1486
107 1167 1327 1487
~ p -

Handling device errors and exception conditions

Processing Name or processing
program ~ . initiation

Page

Operating
system

Memory error
Battery failure on cold restart
Time-out
Cycle t~me exceeded
Statement not decodable
Illegal bloclc

Data block not avaiiable
Block stack overflow

5.3 Programming cyclic processing

Cyclic processing is the "normal" processing mode for programma-

ble controllers (Fig. 15). The processor starts program processing at

the beginning of the STEP 5 program. It works its way through the

STEP 5 statements t o the end of the program and starts processing

again from the beginning of the program.

5.3.1 Interface between the system program
and cycfic processing

Organisation block 1 is the interface between the system program

and the cyclic processing of the user program. The first STEP 5
statement in organisation bloclc l is at the same time the first state-

ment of the user program, i.e. it is equivalent to the beginning of the

program.

The program and function blocks of the cyclic program are called in

organisation block 1 . Further block calls can be located in these

called-blocks, i.e. the blocks can be nested (see 1.3.2 "Program

organisation", p. 4).

The user program runtime is made up of the sum of the runtimes of

the bloclts called. If a Sloclc is called "n" times, its runtime must be

taken into account "n" times when working out the total.

The maximum cycle time is 270 ms.

L--7- -- L-
__7_

System program User orogrJrr

a First statement of the STEP 5 program

@ First program block call. Further calls can be located in this block
.(see also "Program organisation", p. 4).

@) Return from the last program or function b1ock processed

@ The organisation block is terminated with the 'BE' statement

@ Return to the system program

Fig. 15 Cyclic program processing

5. Organisational tasks

5.3 Programming cyclic processing

5.3.2 Rough organisation of the program

Organisation block OB 1 contains a rough arrangement of the user
program. The documentation of this block is meant to illustrate the
main program structures at a glance (Fig. 16) and their relationship
to the process technology (Fig. 17).

I / lcascade II

Interface
--+- flag of

the
individual
control
elements

"C"

Fig. 16 Organisation of the user program according to the program structure

5. Organisational tasks

5.3 Programming cyclic processing

Fig. 17 Organisation of the user program according to process structure

5. Organisational tasks

5.4 Programming of interrupt-driven processing

5.4 Programming of interrupt-driven processing
(servicing a process interrupt)

Interrupt-driven processing can be implemented with the S5-11 OS
programmable controller. Such processing occurs when a signal
from the process causes the processor tp interrupt cyclic pro-
cessing and process a specific program to servicethe interrupt. After
processing this program, the processor returns to the breakpoint in
the cyclic program and continues normal processing (see Fig. 19
and 20).

Interface between the system p r o ~ a - m

and interrupt-drivenprocessing- .~. --

Function block 0 (FB 0) forms the interface between the system
program and interrupt-driven processing. With FB 0 the user
evaluates the edge change of the interrupt input bytes 0,16, 32 and
48.
The output bytes 0,16,32 and 48 of the 1 10 peripherals are reserved
for reaction to interrupts in the output modules. Minimal reaction
time is only assured if these inputs/outputs are used.

User program Interrupt reaction
..--p- ~ - - --

I---- -

Breakpoints

The cyclic program cannot be interrupted by an interrupt at every
point in the processing cycle. This is only possible between blocks
(Fig. 18). The system program can only call function block FB 0 for
interrupt-driven processing when it is changing from one block to
another - e.g. when calling a new block or returning to a superordi-
nate block following a block termination operation.

Assigning prioriris to process interrupts

The user stipulates in FBO the priority of the interrupts if changes in
signal states occur simultaneously.

Reaction time

When a module is being processed, no interrupt can be processed,
i.e. an interrupt is only processed when a block is called or ended.
This means that the maximum reaction time between the occurrence
of an interrupt and its being processed corresponds to the pro-
cessing time of a block, plus interrupt input transfer times and the
user program's reaction time to interrupts at the outputs (< 2 ms.)

In order to keep the transfer times of the interrupt inputs and outputs
of the l 1 0 peripherals to a minimum, the following must be ob-
served:

1. The interrupt input modules of the 110 peripherals must be
plugged into locations 0, 16,32 or 48.

2. The user references the interrupt outputs O,16,32 or 48 on reac-
ting to interrupts in FBO.

3. Interrupt inputs and outputs are addressed in FBO with the LPB,
LPW, TPB and TPW load and transfer statements.

Further block calls in FBO delay interrupt reaction time on the inter-
rupt output side.

---e--

Breakpoints at which an interrupt can be serviced

Fig. 18 Breakpoints in the cyclic program

5. Organisational tasks

5.4 Programming of interrupt-driven processing

Examylg In&r~wpt~drive_n_processit-ig

Legend to Figs. 19 and 20

@) Start of cyclic processing. The system program calls organi-
sation block OB 1.

@ An interrupt occurs at input l 0.3, the signal state of which chan-
ges from "0" to "l ".

@ Block change. The signal state at input 1 0.3 is registered and
evaluated. Processing of ihe cyclic program is interrupted.

@ The system program calls function block FB 0. The program of
this function block is processed until the BE statement (block
end) is reached. The processor then returns to cyclic program
processing.

@ As there is no further interrupt, processing of the cyclic program
continues from the point of interruption.

@ An interrupt occurs at input 1 0.6, the signal state of which chan-
ges from "0" to "1 ".

@ An interrupt occurs at input I 0.0, the signal state of which chan-
ges from "0" to "1 ".

@ Block change. The change of signal states at inputs l 0.6 and
I 0.0 are registered. Processing of the cyclic prograni is inter-
rupted.

@ The system program calls function block FB 0. Here the change
of signal states at inputs 1 0.6 and i 0.0 are evaluated.

@ An interrupt occurs at input 1 0.4, the signa! state of which chan-
ges from "0" to "1 ".
The change of signal state at input 10.4 is registered. Cyclic pro-
gram processing remains interrupted.

@ The system program again calls function block FB 0. In FB 0 the
change of signal state at input 10.4 is evaluated.

@ As there is no further interrupt, processing of the cyclic program
continues from the point of interruption.

An interrupt-driven program is "inserted" into the cyclic program at
a block boundary. The cyclic program is interrupted at this point.
This can be disadvantageous if a cyclic program has to be pro-
cessed within a certain time .to achieve, for example, a certain reac-
tion time.

if a program section is not to be interrupted by interrupt-driven pro-
cessing, the following possibilities are available:

The program contains no block changes, and cannot therefore be
interrupted.

The program ifself is within an interrupt-driven program. Even on
block change it cannot be interrupted by a further interrupt.

The A "Disable interrupt" operation can be programmed. This can
be revoked with the RA ("reset interrupt") (only possible in function

blocks: see "Supplementary operations", p. 38). Between the I A
and R A operations no interrupt-driven processing is possible (time-
controlled processing is not inhibited, however.).

FRO F R ~

FBO For legend, see left

/"
0 Fig 19 interrupt-driven processing with

several Interrupts

pro-
cessing

interrupt-

driven processing 0 1 i , i
l

For legend, see left

Fig. 20 Processing sequence of tne blocks in the above exatnple

Input modules of the 110 peripherals with group interrupt are used
to input interrupt signals. These input modules should be plugged
into locations 0 andlor 16/32/48.

Programming function block 0 -~ ---

When an interrupt occurs, function block 0 is called. The user must
scan the individual inputs in this block and perform the necessary
logic operations. The results of the logic operations at the outputs
must be transfered to output modules 0 andlor 16/32/48 (STEP 5
operations TPBITPW).

If further blocks are called in FBO, the reaction to the interrupt at out-
puts 012 6/32/48 is delayed.

In order to be able to detect short interrupt pulses (e.g. counting
pulses), the interrupt inputs should be examined at definite intervals
by the interrupt service program (FBO) for pulse edge changes. This
can be achieved with the following statement sequence, for example
(see p. 17):

5. Organisational tasks

5.4 Programming of interrupt-driven processing

Example: Registering interrupt pulsesin FE 0 interrupt block
.-p--..-.---.---- ~ .--p--.--.--. p.

Comments

Scanning of peripheral
inputs 0.0 to 0.7 for edge
changes. If an input has an
edge change, a branch is
made to the respective
label.

Repeat scan of peripheral
inputs 0.0 to 0.7 for edge
changes.

If, on repeated scanning of
the peripheral inputs, an
edge change becomes
apparent, a branch is made
back to the beginning
of FB 0

Processing of edge change

Statements
l

Explanation

l
L PB 0 L o a d current per~phera byte n t o accu 1

- - - - p - - -p- - --p - - - - - -- -

:T FB 2 / Contents of accu 1 are transferred to flag byte 2 (current PB 0) 1 Flag byte 1 (old P6 0) is loaded into accu l
:L FB 1 The contents of accu 1 (current P6 0) transferred to accu 2

Bit pattern of accu I is compared with that of accu 2
and the result stored in accu l

:T FB Contents of accu 1 (result) are transferred to flag byte 0
----p

-..-- -p-.--------- ---.-.-.-p------ - - ~

:L FB flaq byte 2 (current PB 0) into accu 1

l Processing of flag byte 0
- -~. - -p--------.-.----- ~ -~---.--..-. -- --p- ~-..-p--- ---~

:]C = l07 4 see above
- - . -P - .. ~ --p-.- - -.

1 Processing of further interrupt-driven statements

-- - - - - - - - - - - -- - - -P-

L. PB Load current per~pheral byte O ~ n t o accu 1
-P- - -- - - -- - - -- p p - - - - --

T FB Contents of accu 1 (current PB 0) are transferred to flag byte 2 1 Flag byte l (old PB 0) is loaded into accu 1 :
:L FB 1 Contents of accu 1 (current PB 0) shifted to accu 2

XOW
-p-- - - P P

- - p-

T FB
- - - -- - - - - - - pp- -

L FE
- -- - - -- -

T FB
P- -- - p --- - -

l 1 Processing of further interrupt-driven statements
-. -~~ . -p-- -~~ - --

~ t ~ o a d ; ~ g byte 3 (result) into accu 1

:T FB Contents of accu l (result) are transferred to flag byte 0
..~ .- - - p - ~.. ~ ~ . - .- -.p---

Fixed-point constant 0 is loaded into accu 1 :

---. - --.-p- ~ . - -

Accu 1 compared with accu 1, if equal;
:!=F RLO = 1 1 if not, RLO = 0
- .- - - -- ..---p-..-.-.--p------ ~

~ --~pp---.----

.- - F If accus are equal (RLO = l) flag 4.0 is set

:AN F Scan flag bit 4.0 for log "W 1 If flag bit 4.0 is log "0" (RLO = I),
:]C FB 0 a iump is made to the beginning of function block 0

:L KF Fixed-point constant 0 is loaded into accu 1
P--... . . ~

:T FB Contents of accu l (fixed-point constant 0) are transferred to flag byte 3
. - --- ... -. -. - . -- - -. . --

1 / Processing of further interrupt-driven statements
. _.- . - -- -..-.....-.p--- ~ --

100 : Processing of statements if flag bit 0.0 is set
. - - . _ lp-l...- .. --P - .. -- - - - -- ..~ --

-. -.--P--.- -

107 : Processing of statements if flag bit 0.7 is set
..-p-.

:BE End of program

5. Organisational tasks

5.4 Programming of interrupt-driven processing
5.5 Start-up and restart procedure

---p--- - .
--p - --

Example of interrupt processing Interrupt
input Programming:

Exact positioning with a limit switch I 0.0 1.0 2 0 2.0 1.0
FB 0 PB 2

Functional description: : L PBO : A 1 1 . 0

An output is switched on via an interlock condition I 1 .O or 12.0 and is : T IB 0 : A N 1 2 . 0

switched off again with a short, constant delay when a limit switch :AN I 0.0 : 0
: R Q 1 6 . 0 : A 1 2 . 0

10.0 has been operated (Fig. 21). : L Q 6 1 6 : A N I 1.0
: T P B 1 6 : S (216.0

Programming: : BE

The setting condition forthe output is programmed in program block Q 1.60
2.

The reset input is assigned to interrupt input I 0.0. FB 0 is called Fig. 21 Example of interrupt processing

according to the setting on the input module with group interrupt 0
with positive-going or negative-going edge of the signal on input
0.0. Only one input I 0.0 is connected to input byte 0.

Programming FB 0:

In order to scan the status of input 0.0, the input image of byte "0"
must first be updated. This is done with the operation LPB and TIB. If
these is a negative-going edge at interrupt input I 0.0 and if output Q
16.0 is reset, the output is transferred directly to the output module.
This is done by the LQB and TPB operations. When transferring to
peripheral bytes 0 to 63, the output process image is automatically
updated.

5.5 Start-up and restart procedure
The system program differentiates between three different start and
restart modes for the programmable controller:

- manual restart

- restart with reset

- automatic restart

The type of restart is controlled by the operating system and the user
can only influence this by means of the "Reset" button.

Manual restart

A restart is initiated manually by moving the "Stop" switch on the
CPU from the "Stop" position to the "Run" position.

The system program then executes the following:

- resets the non-retentive flags (F 128.0 - F 255.7)

- loads the input process image

- erases the output process image

- resets all peripheral outputs

- establishes the block address list

Manual restartwith reset
-p--

A restart with reset is initiated manually by pressing the "Reset"
button and simultaneously moving the stop switch on the CPU from
the "Stop" position to the "Run" position.

The system program then executes the following:

- erases all current timer values

- erases all current counter values

- resets all flags

- loads the input process image

- erases the output process image

- resets all peripheral outputs

- establishes the block address list

Automatic restart --

The programmable controller tries to execute an automatic restart
when the power returns after a power failure. The function of the
automatic restart is identical to that of the manual.

If the user does not wish to have an automatic restart on return of
power after a power failure he can check a non-retentive flag at the
beginning of OB 1 and bring the system into the stop state with the
STEP 5 operation "STP".

5. Organisational tasks

5.6 Evaluation of device errors and exception conditions

5.6 Evaluation of device errors
and exception conditions

The system program is capable of detecting maloperation of the
central processor, errors in the system program or the effects of
incorrect programming by the user. With some of these errors,
proper operation of the central processor is no longer guaranteed.
The programmable controller then stops.

The reaction to device errors and exception conditions is defined in
the system. The following events are evaluated:

Memory error

Battery failure (on restart)

Time-out when accessing memory

Cycle time exceeded

Statement not decodable

Illegal block

Non-existent data block

Block stack overflow.

Memory error -

The cyclic program terminates with a "Block end" statement in
organisation block 1 (OB 1). If the processing time exceeds a certain
length (the "Cycle time" preset in the processor), the system pro-
gram recognises a "Cycle time exceeded" error.

This can be caused, for example, by incorrect programming when,
under certain process conditions, the processor runs in a program
loop or on failure of the system clock.

If the cycle time is exceeded, the system program interrupts the
STEP 5 program and stops.

Statement not decodable
- p-p-- .

If the PC processes a STEP 5 statement which is not part of the set of
the SlMATlC S5-110s programmable controller, it stops.

Illegal block

If there is a block call statement in the user program which has a
block number higher than the maximum permitted for the PC (127
with PBs, 63 with DBs and 47 with FBs), the controller stops when
processing the statement.

Non-existent data block
In the event of a restart the system program recognises wrongly
addressed user memory submodules and stops (erroneous jumper

If a data-word load or transfer statement is processed in the user
program without a matching data block having previously been

assignment).
called (address range assignment for DB is missing), the PC stops.

In addition, the operating system is checked at each restart. If an
error is recognised by the operating system, the PC stops. Blockstackoverflow - - -

If the "Compress memory" function (implemented by the PC for the
If more than 7 blocks are called in a row in the user program without a

programming unit) is interrupted by a power failure, for example, the
BE statement being run through, the maximum block nesting depth

PC stops.
of 8 is exceeded and the PC stops.

Batteryfailure

If the battery fails on restart (battery voltage below minimum per-
missible level), the PC stops.

Time-out

A time-out occurs when a non-existent memory area is addressed.
The cause of the time-out can be a fault in the module or the removal
of the module during operation of the programmable controller.

Cycle time exceeded .- -

The cycle time consists of the total processing time of a cyclic pro-
gram. Included in this are the calling and processing of organisation
block 1 and the program and function blocks called in this organi-
sation block, with nesting, as well as all the interrupt-driven and
timer-driven program sections processed in this cycle.

6. Programming examples

6.1 Basic operations (program and data blocks)
6.1.1 Binary logic functions

6. Programming examples

6.1 Basic operations (Program and data blocks)

6.1.1 Binary logic functions

AND logic

I STEP 5 representation

Statement 1 Ladder diagram
11s1

Control system flowchart

A"1" signal appears at output Q 3.5 when all inputs have "1" signals
simultaneously.

A"0" signal appears at output Q 3.5 if at least one of the inputs has a
"0" signal.

There are no restrictions imposed on the number of scans and the
programming sequence.

Statement 1 Ladder dtagram Control system flowchart

OR logic
-p- .- -- -- - -- ---pp- - -

A"1" signal appears at output Q 3.2 if at least oneof the inputs has a
"1 " signal.

A "0" signal appears at output Q 3.2 if all the inputs have "0" signals
simultaneously.

There are no restrictions imposed on the number of scans and the
programming sequence.

Original STEP 5 representation

6. Programming examples

6.1 Basic operations
6.1.1 Binary logic functions

AND before OR logic

STEP 5 representation

Statement 1 Ladder diagram
list

-- - -- + -

I Control system flowchart

A "1" signal appears at output Q 3.1 when the output of at least one
of the AND gates is "1".

A "0" signal appears at output Q 3.1 when neither of the AND gates
has a "1" at its output.

OR before AND logic
-p-

Orig~nal (STEP 5 representation

Statement 1 Ladder diagram
list

1 Control system flowchart

A "1" signal appears at output Q 2.1 when input 16.0 or input I 6.1
and one of the inputs 16.2 or 1 6.3 have a "1" signal.

A "0" signal appears at output Q 2.1 when input 1 6.0 has a "0'
signal and the AND gate has a "0" at its output.

6. Programming examples

6.1 Basic operations
6.1 .l Binary logic functions

OR before AND logic

Original 1 STEP 5 representat~on

Staternent 1 Ladder d~agram
list

Control system flowchart

A " l " signal appears at output Q 3.0 when both OR gates have "1"
signals at their outputs.

A "0" signal appears at output Q 3.0 when at least one of the OR
gates has a "0" signal at its output.

Scanning for " 0 signal status

Original STEP 5 representation

Staternent 1 Ladder diagram
list

Control system flowchart

A "1" signal only appears at output Q 3.0 when input 1.5 has "1"
signal, and the input 1 1.6 has "0" signal.

6. Programming examples

6.1 Basic operations
6.1.2 Settinglresetting functions

6.1.2 Settinghesetting functions

RS flip-flop for stored signal output

Original 1 STEP 5 representation

Statement 1 Ladder d~agram
list

Control system flowchart

The flip-flop is set when a "1" signal is applied to input 1 2.7. If the signal at input 1 1.4 changes to "0" this status is still retained.

If the signal at input 1 2.7 changes to "O", the status remains un- The last program scanning operation (in this case A 14.4) is effective
changed, i.e. the signal is stored. during the processing of the remaining program, if a set signal (input

The flip-flop is reset when a "1" signal is applied to 1 1.4. 1 2.7), and a reset signal (input 1 1.4) are simultaneously applied.

RS flip-flop with flags
-

Original STEP 5 representation

Statement (Ladder diagram
list

1 Control system flowchhrt

The flip-flop is set when a "'l" signal is applied to input 1 2.6. If the signal at input 1 1.3 changes to "0", this status is still retained.

If signal at input 12.6changes to "O", the status remains unchanged, The last program scanning operation (in this case A 1 1.3) is effective
i. e. the signal is stored. during the processing of the remaining program, if a set signal (input

The flip-flop is reset when a "1" signal is applied to reset input 1 1.3. 1 2.6) and a reset signal (1 1.3) are simultaneously applied.

6. Programming examples

6.1 Basic operations
6.1.2 Settinglresetting functions

Implementation of an impulse contact

Original

-

/ STEP 5 representation

Statement 1 list
Ladder diagram

R F4.0
NOP 0

/ Control system flowchart

The AND logic (A I 1.7 and AN F4.0) is fulfilled at each positive-going Flag F 2.0 is reset. This means that flag F 2.0 only has a "1" signal for
edge of the signal at input 1 1.7 and flags F4.0 and F 2.0 ("pulse edge one program cycle.
flags") are set if the result of the logic operation is "1".

The AND logic A 1 1.7 and AN F 4.0 is no longer fulfilled at the next
program pass, as flag F 4.0 is set.

Binary scaler

Original STEP 5 representation

Statement Ladder diagram
list

/ Control system flowcnort

l

S F 1 0
AN1 1 0
R F 1 0
NOP 0
A F 1 1
A 0 3 0
- F 2 0

A F 2 0
R A 3 0
A F 1.1
AN F 2.0
S (23.0
NOP 0

The output of the binary scaler (output Q 3.0) changes its state at
each positive-going edge of the signal at input 1 1.0, i.e. when input
I 1.0 changes from a "0" to a "1". Thus, half the input frequency
appears at the binary scaler output.

6. Programming examples

6.1 Basic operations
6.1.3 Loading and transfer functions

6.1.3 Loading and transfer functions

Loading a timer value

1 STEP 5 representation

Statement j Ladder diagram
list

1 Control system flowchart

The contents of the memory location addressed by the T10 state-
ment are loaded into accumulator 1.

Transferring
pp-.. ~- -. -- -p--. .

Original / STEP 5 representation

Statement Ladder diagram 1 Control system flowchart
list

\ load

Accu l

transfer

QW 60

The contents of accumulator l are transferred into the process
image addressed by the QW 60 statement. Transfer of time T 10 to
QW 60 is in binary in this example.

A 1 5 0 ,
L IW22
SPT 10

T QW60
DE

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

6.1.4 Timer functions

Pulse

Original I STEP 5 representation

;;;tement Ladder diagram (Control system flowchart

A 1 3.0
L KT 10.2
SPT 1
A T 1

The timer is started during the first processing cycle if the result of The timer is loaded with the specified value (10). The number to the
the logic operation is "1". The timer remains unchanged during sub- right of the point indicates the time base:
sequent processing, resulting in a "1" signal. 0a0.01 S 2& l S

The timer is set to zero (reset) when the result of the logic operation L O.l l0

is "0". Outputs DU and DE are digital. The timer value is in binary code at
output DU and in BCD code at output DE.

The ATor OTscans result isa "1"signal as long as thetirne is running.

Extended pulse

Original 1 STEP 5 representation

Statement I Ladder diagram
list

1 Control system flowchart

A 1 3.1
L IW15
SET 2
A T 2

The timer is started during the first processing cycle if the result of
the logic operation is "1".

The timer remains unchanged if the result of the logic operation is
"0".

The AT or OT scans result in a "1" signal as long as the time is run-
ning.

Byte l5 Byte l6

Set the time value with the BCD-value of the operands I, Q, F or D
(input word IW 15 in the above example).

IW 15:
In the above example the timeTof theextended pulse is 1270 S, con-
trolled by input word 15 (IW 15).

EW15&127.10s= 1270s

Time base
o e o . 0 1 ~ 2 a IS

i eo.1 S 3A10s
3 i i7

time
base time value

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

"On" delay timer
--

Original STEP 5 representation

A 1 3.5
L KT9.2
SRT 3
A T 3
= Q 4.2

Ladder diagram 1 Control system flowchart
l

The timer is started during the first processing cycle if the result of 13.5 n
the logic operation is "1". The time remains unchanged during sub-

Q 4&3
sequent processing if the result of the logic operation remains "l".

The timer is set to zero (reset) if the result of the logic opetation is KT
"0". Load the timer with the specified value (9).

-rhe AT or OT scans result in a signal when the time has elapsed The number to the right of the point indicates the time base

and the result of the logic operation is still present at the input. 0 2 0 . 0 1 s 2 2 I S

1 ~ 2 0 . 1 S 3 A 1 0 s

"Off" delay

Original / STEP 5 representation
Statement 1 Ladder diagram
list

1 Control system flowchart

AN1 3.4
L FW13
SFT 5
A T 5

The timer is started during the first processing cycle if the result of Set the timevalue with the BCD valueof the operand I, Q, For D (flag
the logic operation is "0". The timer remains unchanged during sub- word FW 13 in the above example).
sequent processing if the result of the logic operation remains "0".

The timer is set to zero (reset) when the result of the logic operation FW 13:

is "l ". In the above example, the time T of the "off" delay is 23 S, and is

The AT or OT scans result In a "1" s~gnal when the t~mer IS runnlng or determined by flag word 13 (FW 13)

the result of the log~c operation IS still present at the ~nput F W 1 3 a 2 3 l s = 2 3 s
T~me base

Byte 13 ~ y t e 14 0 a 0 0 1 s 2 a 1 s

i a 0 1 s 3 G 1 0 s , , , ~ ~ l ~ ~ ~] $ i ~ & ~ ~ i % ~ L..d, . ., '- iJiIij
2 0 2 3

tlme 23
base tfme value

-pp--
p- -- --

27

6. Programming examples

6.1 Basic operations
6.1.4 Timer functions

Stored "On" delay

Original ! STEP 5 representation

i Statement Ladder diagram
list

Control system flowchart

A 1 3.3
L DW21
S S T 4
A 1 3.2
R T 4
A T 4
= Q 4.3

The timer is started during the first processing cycle if the result of
the logic operation is "1 ".
The timer remains unchanged if the result of the logic operation "D".
The AT or OT scans result in a "1" signal when the time has elapsed.
The signal status only changes to "0" when the timer is reset by the
RT function.

Byte 21 Byte 22

_L - - - -

Set the time value w ~ t h the BCD value of the operands I, Q, F or D
(DW 21 in the above example)

In the above example the tlme T of the "on" delay IS 3 S, and IS deter-
rnlned by data word 21 (DW 21)
DW21 2 3 0 0 001 S - 3 s

T~me base
Q G Q Q I S 2e I S

1 2 0 1 s 3 2 1 0 s

v

time 300
base time value

6. Programming examples

6.1 Basic operations
6.1.5 Counter functions

6.1.5 Counter functions

Set counter

Original STEP 5 representation

Statement 1 Ladder diagram
list

Control system flowchart

- - -. -- -

binary
16b

The counter IS set during the first processing cycle rf the result of the Byte 20 Byte 21
logic operat~on is "1" The counter remalns unchanged during sub- --I

sequent processing (no matter whether the result of the log~c opera- ,W 20 X] X X ~ X ~ O ~ O ' ~] O [O , ~ ~ O $ T ~
* 'U

tion rs "I" or "0") The counter is set again (pulse edge evaluation) 3 9 4
at the next first processing cycle if the result of the log~c operatton 394
is "1 "

The flag necessary for pulse edge evaluation of the set input is in-
cluded in the counter word. The counter word can be IW, OW, FW,
DW.

In these counterwords, the counter value of the counter is specified.
The countervalue is given in 16 bit BCD code, whereby the first 4 bits
of the counter are not processed.

In the above example the initial value of the counter is 394. Outputs
DU and DE are digital.

The counter value is in binary code at output DU and in BCD code at
output D t .

Reset counter
- . ..--p --- - -- - -

Original / --STEP 5 representation 1 ;l;teme.t 1 Ladder diagram

binary
16b

Control system flowchart

The counter is reset when the result of the logic operation is ''l ". The
counter remains unchanged even if the result of the logic operation
becomes "0".

6. Programming examples

6.1 Basic operations
6.1.5 Counter functions

Counting up

Original STEP 5 representation

Statement 1 Ladder diagram
list

Control system flowchart

A 1 4.1
CUC 1
NOP 0
A l 5.1
L IW20
S C l
NOP 0
NOP 0
NOP 0
A C 1
= Q 6.0

The value of the addressed counter is only incremented by 1 if the A Counter with two different inputs can be used as an upldown
CU input of the counter shows an edge-change from "0" to "I". The counter by means of the two separate pulse-edge flags for CU and
flags necessary for pulse edge evaluation of the counter inputs are CD.
included in the counter word. The Q output of the counter remains "1" as long as the actual count

is > 0.

Counting down

Original STEP 5 representation

Statement Ladder diagram
list

Control system flowchart

A 1 4.0
CDC 1
NOP 0
A 1 5.0
L DW10
S C 1
A 1 6.0
R C 1
NOP 0
NOP 0
A C 1
= F 10.0

The value of the addressed counter is only decremented by 1 if the A counter with two different inputs can be used as an up/down
CD input of the counter shows an edge-change from "0" to "1". The counter by means of the two separate pulse-edge flags for CU and
flags necessary for pulse edge evaluation of the counter inputs are CD.
included in the counter word. The Q output of the counter remains "1" as long as the actual count

is > 0.

6. Programming examples

6.1 Basic operations
6.1.6 Comparison functions

6.1.6 Comparison functions

Comparing for equal to

Original I STEP 5 representation 1 list Statement Ladder diagram

- -

/ Control system flowchart

The first operand specified is compared with the subsequent The numerical representation of operands (fixed-point arithmetic) is
operand according to the comparison function. The result of the taken into account.
comparison is shown by the CC0 and CC1 condition codes. After comparing for equal to, a jump can be made with the 12 = . . .

function (if the RLO = 1) to a "label" (t 127 words).
for 1 CCI I cco 1 RLO
-- - .--p-..- p

Comparing for not equal to
- --

Original STEP 5 representation

Statement / Ladder diagram
list

Control system flowchart

The first operand specified is compared with the subsequent ape- The numerical representation of operands (fixed-point arithmetic) is
rand according to the comparison function. The result of the com- taken into account,
parison is shown by the CC0 and CC1 condition codes. After comparing for not equal to, a jump can be made with the

I N = . . .function (if the RLO = 1) to a "label" (t 127 words).
for
p---.

CC0 RLO

IB 21 = IB 22 0 0

6. Programming examples

6.1 Basic operations
6.1.6 Comparison functions

Comparing for greater than
- - --?P- P P P P - P -

Orlg~nal STEP 5 representation

Statement Ladder dlagram
1st

1 Control system flowchart

The first operand specified is compared with the subsequent The numerical representation of operands (fixed-point arithmetic) is
operand according to the comparison function. The result of the taken into account.
cornparcson IS shown by the CC0 and CC1 cond~tion codes After cornparlng for greater than, a jump can be made wlth the

1P = funct~on (~ f the RLO = I) to a "label" (F 127 words)
for

IB 23 = IB 24
- - - Pp - - p

Q

0 7-7-
- -

lB23< IB24 0

Comparing for less than

Original 1 STEP 5 representation

Statement / Ladder diagram
list

/ Control system flowchart

The first operand specified is compared with the subsequent The numerical representation of operands (fixed point arithmetic) is
operand according to the comparison function. The result of the taken into account.
comparison is shown by the CC0 and CC1 condition codes. After comparing for less than, a jump can be made with the JM = . . .

function (if the RLO = l) to a "label" (+ 127 words).
for 1 CCI 1 cco I RLO

6. Programming examples

6.1 Basic operations
6.1.6 Comparison functions

Comparing for greater than or equal to

Original STEP 5 representation

Statement Ladder diagram
list

Control system flowchart

l

The first operand specified is compared with the subsequent The numerical representation of operands (fixed-point arithmetic) is
operand according to the comparison function. The result of the taken into account.
comparison is shown by the CC0 and CC1 condition codes.

fnr l CCI l cco l RLO

After comparing for greater than or equal to, a jump can be made
with thelC = . . .function (if the RLO = I) to a "label" (Ifr 127 words).

Comparing for less than or equal to
-- -p--- p p ---p--- -- -

Original STEP 5 representation

list Statement Ladder diagram Control system flowchart

p-...--- .---- -L -- . . - .---p. -.-.-p-- - - --

The first operand specified is compared with the subsequent The numerical representation of operands (fixed-point arithmetic) is
operand according to the comparison function the result of the taken into account.

comparison is shown by the CC0 and CC1 condition codes. After comparing for less than or equal to, a jump can be made with
the IC = . .function (if the RLO = 1) to a "label" (+ l27 words).

for / CC? 1 cco 1 RLO

6. Programming examples

6.2 Supplementary operations (function blocks)
6.2.1 Binary logic functions

6.2 Supplementary operations (function blocks)

Function blocks can be programmed with an operation set supple-
mentary to the program blocks so that the entire operation set for
function blocks consists of the basic operations and the supple-
mentary operations.

Function block operations can be represented only by statement
lists, i.e. the programs cannot be programmed in graphic form (CSF
or LAD).

6.2.1 Binary logic functions

Example

Photoelectric cell equipment connected to
input 1 2.0 has been installed to count single
items. After 100 items, a jump should be
madeeitherto function block FB 5 orto FB6.
After a count of 800, the counter 10 is auto-
matically reset and starts counting from the
beginning again.

Photoelectric cell equipment connected to
input 1 10.0 counts individual pieces. After
every 256, the counter should be reset and
start counting again.

STL
-- - - -

A 1 2.0
CU C 10
A 1 3.0
L KC 0
S C 10
0 1 4.0
0 F 5.2
R C 10
LD C 10
T DW12

A 1 100
cu C 20
A 1 110
L KC0
S C 20

F-ZTq
1C = FULL"
BEU

lULL.RU C] - -

BE

Description

The following description refers to operations which are used only
with function blocks. The possible combinations of the substitution
statements are given with the actual operands.

The count of the C 10 counter is loaded with the constant 0 by input 1 3.0. Each positive
edge change at 1 2.0 increments the count by 1. The counter is either reset by 1 4.0 or flag
F 5.2.

The current count is stored in the data word as a BCD value

As long as the 8th data bit of DW 12 is zero, a jump is made to FB 5. This is the case for the
first, third, fifth etc. hundred pieces counted.

As long as the 8th data bit of DW 12 is "l", a jump is made to FE 6. This is true in the case of
the second, fourth, sixth etc. hundred.

As soon as the l 1 th data bit of DW 12 is "l" (800 have been counted), flag F 5.2 is set
conditionally.

Counter C 2.0 is loaded by input I 11.0 with the constant 0. At each positive edge change
at 1 10.0, the count is incremented by 1.

As soon as the count has reached the number 256 2 1001, (bit 8 is "l"), a jump is made to
the "FULL" label; apart from this, the block is ended.

Bit 8 of counter C20 is set to "0" unconditionally, resulting in the count returning to 000~ .

Note:
The times and counts are in the 10 lower-order bits (bits 0 to bit 9) of the time wordlcount word in hexadecimal code. The time base is stored in bit 12 and 13 of the time
word.

') See jump functions 6.2.4 (page 36)

6. Programming examples
6.2 Supplementary operations

6.2.2 Digital logic functions
6.2.3 Arithmetic functions

6.2.2 Digital logic functions

Example:

The hexadecimal number 3F84~ is to be
ANDed with inputword l oftheinputs(1W 1).
The result is to be written into output word
10 of the outputs (QW 10).

3F84u
I w 1 4793~ .

Result AW 0784~

STL Description
- ~ - -

The hexadecimal number is loaded into accu l . The old contents of accu 1 are shifted into
accu 2 simultaneously.
lnput word 1 (IW 1) is loaded into accu 1 and the hexadecimal number shifted into accu 2.

The contents of accu 1 are digitally ANDed with those of accu 2 and the result is stored
in accu 1.
The contents (result) of accu 1 are transferred to output word 10 (QW 10).

Result

The two blt patterns
0101 111010001011
and
011100010111 l100
are to be ORed

5.2.3 Arithmetic functions

L K M 0 1 11

L KM 01 00

The first bit pattern is loaded into accu 1. The old contents of accu 1 are shifted into accu 2
simultaneously.
The second bit pattern is loaded into accu 1 and the first bit pattern shifted into accu 2.

0111 0001 0111 1100

ResultOW 0111 1111 1111 1111
p - p - - - -

lnput word 5 1s to be compared for equality
w ~ t h data word 12 The diss~m~lar b ~ t s of the

DW 12 E A ~ ~ H

words are to be written Into output word 6

IW 5 6 8 C 5 ~

XOW 8246~

The contents of accu 1 are digitally ORed with those of accu 2 and the result is stored in
accu 1.

The contents (result) of accu 1 are transferred to flag word 13 (FW 13)

Data word 12 is loaded into accu 1. The old contents of accu 1 are shifted into accu 2
simultaneously.
lnput word 5 is loaded into accu 1 und data word 12 is shifted into accu 2.

The contents of accu 1 are digitally EXORed with those of accu 2 and the result is stored
in accu 1.
The contents (result) of accu 1 are transferred to output word 6.

Example: / STL / Description

The right-hand byte of data word 85 is to be
subtracted from the number + 127, and the
result stored in the left-hand byte of data
word 85

The constant fixed-point number + 127 is loaded into accu 1. The old contents of accu 1
are shifted into accu 2 simultaneously.
The right-hand byteof data word 8515 loaded into accu 1 and the fixed-point number + 127
shifted into accu 2.
The contentsof accu 1 are subtractedfrom thoseof accu 2and the result isstored in accu 1.
The contents of accu 1 (result) are transferred to the left-hand byte of data word 85.

Note:
When exceeding the numerial area (-32768 to +32767) the result of operation is undefined (OVR = "1").

6. Programming examples
6.2 Supplementary operations
6.2.4 lump functions
6.2.5 Timer and counter functions
6.2.6 Shift functions

6.2.4 lump functions

The destination for unconditional and conditional jump statements remembered that the absolute jump displacement cannot be more
is specified symbolically (max. 4 characters). The symbolic para- than t 127 words and that a STEP 5 statement cannot consist of
meter of the jump statement is identical to the symbolic address of more than one word. lumps can only be executed within a module;
the statement to be jumped to. When programming, it must be jumps across segments are not permitted.

Example: 1 STL Explanation

If no input of input word 1 is set, jump is
made to the "AN 1" label.

If input word 1 and output word 3 are dis-
similar, a jump is made back to the "AN O"
label.
If input word 1 and output word 3 are identi-
cal, input word 1 is compared with data
word 12.
If input word 1 is greater or less than data
word 12, a jump is made to the "DES" label.

AN1 L IW1
L QW3
xow

i , ,P-AN, 1
L iW1
L DW12
><F

- -
l JC=DES 1

DES: A 112.2

lnput word 1 IS loaded Into accu 1 If the contents of accu 1 = 0, a jump 1s made to the
,,AN 1" label, otherw~se the next statement (AI 1 0) 1s processed

Comparaison of input word 1 and output word 3. If dissimilar, individual bits are set in
accu 1.

If accu 1 is not zero, a jump is made back to the"AN 0" label, otherwise the next statements
are processed.

lnput word 1 is compared with data word 12 for greater thanlless than. If larger or smaller,
RLO "1" is set.

If RLO = "l", a jump is made to the "destination" label

If RLO = "O", the next statement is processed.

6.2.5 Timer and counter functions

Example 1 STL 1 Description

A timer T 2 is started as an extended pulse
with 50s pulse duration. This timer sets
output Q 4.2 for the duration of the pulse.

If output Q 3.4 is continually set, the time
should be continually restarted.

A timer T2 is started as an extended pulse. Output 4.2 is set for 50s

If output 3.4 is set during the time (positive edge change of the RLO) within which input
2.5 is still set, timer T2 is restarted. This means that output 4.2 remains set for the duration
of the restarted time or is set again.
If input 2.5 is not set at edge change of output 3.4, the time is not restarted.

6.2.6 Shift functions

Example I STL 1 Description

in data word 1 the last four bits of the hexa-
decimal number ~ ~ A F H are to be deleted
and the resultant hexadecimal number
0 1 4 A ~ stored in data word 3.

I Load data word 1 in accu 1

l Shift contents of accu 1 four bit positions to the right. The bit positions which become
vacant on shifting are filled with zeros.
Transfer the contents of accu 1 to data word 3

Note:
The shift functions areexecuted unconditionally. The last bit shifted out can be scanned with jump functions
A jump can be made with 1Z if the bit is "0" and with I N or JP if the bit is "1".

6. Programming examples
6.2 Supplementary operations

6.2.7 Conversion functions
6.2.8 Decrementingllncrementing

6.2.9 DisablingIEnabling command output

6.2.7 Conversion functions

Example
- - - - -

The contents of data word 64 are to be in-
verted b ~ t by b ~ t and stored in data word 78

6.2.8 Decrernentingllncrementing

STL Description
- - - - - ---p p - - - -. -

L DW 64 Load data word 64 lnto accu 1

CFW I h e ' s complement of the contents of accu 1
Result is In accu 1 ----l

DW 64 E.483~
DW 78 157Ci

Example I STL

T DW 78

1 T DW 35 1 Transfer the contents of accu 1 to data word 35.

The hexadeclmal constant 1010h is to be 1 L IKH 1010
lncremented In steps of 16 and stored In
data word 8 In addltbon, the result of incre-
menting is to be decremented In steps of 33
and stored ~n data word 9

33 l

--

Description
- - - - -- -p p -- -

Load hexadeclmal constant 1010ii lnto accu 1
Increment the low byte of accu 1 by 16 The result 1020~ is In accu 1

- -

Transfer the contents of accu 1 (102011) to data word 8.
As theresultof incrementing isstill in accu 1, thedecrement33 can beformeddirectiyfrom it.
The result would be FFFH. However, as the high byte of accu 1 was not also decremented,
the result in accu 1 is IOFFH.

- - - - p

I T D W 9 1 The contents of accu I are transferred to data word 9 (IOFFH)

Note:
lncrementing and decrementing are always decimal, the results are always stored in accu 1 in hexadecimal

The contentsof data word42 are to be Inter
preted as a fixed polnt number and stored
with inverted sign in data word 35

6.2.9 Disablelenable command output

L DW 42
~ -

CSW j

Example Descrlptlon
- -- --pp- -- - - -- -- -- -

Scannlng input 0 5 for "1"
are to be disabled
If Input 0 5 1s set, the commands

1 D~sable command output with lnput 0 5 set (RLO & "1")
- --

Scanning input 0.6 for "l"

Scanning input 0.5 for '0" If input 0 6 1s set and input 0 5 reset, the
command dlsable IS to be cancelled / Enable command output if input 0.6 is set and 0.5 is not set (RLO 2 "l ")

A 10 6

AN 10 5

- -1
BAF _I

Note:
Disabielenabie commend output" can be used, for example, to repeat a sequence at a certain step without setting or resetting the steps already run through.

6. Programming examples
6.2 Supplementary operations
6.2.10 Disablelenable interrupts
6.2.1 1 Processing functions

6.2.10 Disable/enable interrupts

Example 1 STL Description

Disabling and then enabling interrupt pro-
cessing within a certain program section.

Disable interrupt

If an interrupt occurs, interrupt block FBO is not first jumped to on jumping to FB3, but the
program is processed normally.

Enable interrupt.
If the interrupt is still pending, a jump is first made to the interrupt block FBO at a block
boundary.

6.2.1 1 Processing functions

Example I STL 1 Description

r--- - - --
The actual parameters of the tlmes lt is de- DO DW13 A 1 Process data word 13 If h ~ g h byte 0 low byte 15 are In data word 13, the time 15 is enabled

slred to enable aaaln are to be stored In - - by via Input 43 6 for cold restart

Theactual parametersof the inputsscanned
are to be stored ~n data word 12

data word 13. / FR TO 1

~ o p p - D W ~ j
-L- - -

A 10 0

The "AI" operation in combination with "DO DW" and "DO F W The following operations can be combined with the DO DWIDO
becomes an "AQ" operation if the byte address in the datalflag FW operation:

F$';rossd~;;a~rd 12 If high byte 6 and low byte 43 are in data word 12, input 43 6 is

The contents of data words DW 20 to DW
l00 are to set to s~gnal state "0" The index
registerforthe parameters of thedata words
1s DWO

Note

word is larger than 127. I

The 670 programming unit does not check the legality of the combination of the parameters with the operands The parameter :S assigned to the specified operation
from the data or flag word The high byte of the flag or data word is only necessary for inputsloutputs and for flags (between 0 and 7). otherw~se it must be 0

L KB20
T DW1

M 1 L KHO
--

D o p 7 1- - - _ _- -

T DWO

L DW1
L KB1

+F

T DW1
L KBlOO

<=F

l C = M1

L-, LD, T-
JU, IC, 12, IN, IP, I M , l0
SLW, SRW

D, I
C DB,]U-, 1C-

Load constant 20 into accu l
Transfer contents of accu 1 to data word 1
Load hexadec~mal constant 0 ~ n t o accu l

Process data word l

Transfer contents of accu 1 into the data word the address of whlch 1s stored ~n data
word 1
Load data word 1 into accu 1
Load constant 1 into accu 1
Data word 1 1s shifted into accu 2
Accu 1 and accu 2 are added together and the result is stored In accu 1 (increas~ng the
data word address)
Transfer contents of accu 1 into data word 1 (new data word address)
The constant 100 is loaded into accu 1 and the new data word address 1s shifted ~ n t o
accu 2
Comparison of the accus for less than or equal

accu 2 5 accu 1
Conditional jump to label M1 as long as

accu 2 is 5 accu 1

A-, AN-, 0- , ON-
If a parameter =k 0 is specified for the operations which are combi-

S-, R-, = -
ned with "DO D W or "DO F W , no address computation is execu- FR T, R T, SF T, SR T, SP T, SS T, SET
ted. Both parameters are ORed. FR C, R C, S C, C D C, C U C

Load and transfer functions
lump functions
Shift functions
Decrementing, incrementing
Block calls

Binary functions
Memory functions
Timer functions
Counter functions

6. Programming examples
6.2 Supplementary operations

6.2.12 Substitution functions

6.2.12 Substitution functions

When processing the STEP 5 program, the PC executes a "subst~tu- HANS stands for I 1 5, see page 9). Whenthe function b lock iscalled,

t ~ o n " withinafunction b locki f theoperand isaformal parameter (e.g the formal parameter is replaced (substituted) b y agenuineoperand.

AND - OR logic with RS flip-flop

Program n functioii block (FB 30) 1 Function block call Executed program

A - IhP 1
I

1 AN = I Y P Z
0 -INP 3

I S -MOT 5
-OUT 1

A =VAC1
A =INP?
O N INP 3
RE -MOT5

I BE

I STL
I U FB 30 1 NAME LOGIC

INP 1 1 2 0
I N P 2 1 2 1
I N P 3 l 2 2
VAL 1 1 2 3
OUT1 Q 7 1
OUT2 Q 7 2
MOT5 Q 7 3

BE

1 2 3 ~ - l VALl I - - - - - - - - - - - - -

Load and transfer functions

Program In function block (FB 34)
P - -P . - - - -

A =l 0

I
A =I 1

I =LW l /
- -

S C 7
A 122
CU C 6
CU C 7

Funct~on block call
-P - -. -- - -- - - . - -

STL
1U FB 34

NAME LOAD!TRAN
1 0 1 2 0
1 1 . 1 2 1
L 1 . FW 10
LW l KC 140
L C 1 . C 7
T 1 OW4
L W 2 . KC160

BE

I
12 .1 - - - l 11

I
l

I
F W I O - - (L1

I
I

K ~ 1 4 0 - - ; LW1 I l

C 7 - - - j L D l l l

KC 160- - 1 LW 2 I
I

L _ - _ - - _ ----- l

Executed program

Operat~on Descr~ption
~. . - ~p~ . . -- - - -~ -p--..p- - . .~ --p--.p. .-

L = . Loading a formal operand. The value of the operand spec~fied as formal operand is loaded into accu 1
[operands IB, IW, FE, FW, QB, QW. DR. DL, DW. PE, PW].

p- ~ ----- ~ ..p--- -p-p-.- ..--p-P... .p-.-.----p-

LD = . Load~ng a formal operand as BCD number The valueof the timer or counter location specified as formal operand is loaded into accu 1 as ! a BCD number looerands T. Cl.

Loading the b ~ t pattern of a formal operand The b ~ t pattern of the formal operand is loaded into accu 1
KB, KS, KF, KH, KM, KY, KT, KC]

-. -- -.-p-p .-p--. - --

Transfer to a formal operand. The contents of the accu are transferred to the operand specified as formal operand
[operands IB, IW, FB, FW, QB, QW, DR, DL, DW, PB, PW]

6. Programming examples
6.2 Supplementary operations
6.2.12 Substitution functions

Timer functions

Program in function block (FB 32) 1 Function block call i Executed program

STL
: l U FB 32

NAME: TIME
1 5 : 1 2 . 5
1 6 : 1 2 . 6
TIM 5: T 5
TIM 6: T 6
OUT6: Q 7.6

: BE

l RD
RD - iTiM TIM 6 S I

Operation Description

SP =
- -. - - - -

.... Starting a timer specified as formal operand with the previously loaded time as pulse [operand T].
- - - -- - ...-p-- ..--p -~

SEC :.... Starting a timerspecified as formal operand with the previously loaded timeas extended pulse [operandsTand C (see counterfunctions)].

SI . . . Starting a timer specified as formal operand with the previously loaded time as "on" delay [operand T].

SFD =.... Starting a timer specified as formal operand with the previously loaded time as "off" delay [operands T and C (see counter functions)].

SSU =.... Starting a timer specified as formal operand with the previously loaded time as stored "on" delay [operands T and C (see countet

-- -
functions)].

---p- ~~ ..---- ~ p-----.-.-. ~
~ ----...-pp---.....-...--

FR = . . .

RD = Digital resetting of a formal operand [operands T and C].

Counter functions

Program in function block (FB 33) 1 Function block call I Executed program

A =l 2
L KC 17

- - ----
1 SEC - 6 O U 5 l

A =l 3

l

1 SSU =COU5 1
A =l 4

I l , SFD -=COU5 /
A =COU 5
- =OUT 3
A 127 , - - --- - - -

=COU 5 1
l - - -

BE

Operation / Description

STL
: 3U FB 33

NAME: COUNT
1 2 : 1 2 . 2
1 3 . 1 2 . 3
1 4 : 1 2 . 4
COU5: C 5
OUT3: Q 7.3

: BE

SEC =. ... Setting a counter specified as formal operand with the previously loaded count [operands C and T (see timerfunctions)].
.. -- ~ p--~ -~ - . ~ .- -. ~ - - - ~p --

SSU =.... a counter specified as formal operand [operands C and T (see timer functions)].
--pp- -. .- ---- -. ~ -..-.-p---pppp--p-p -..

SFD =.... Decrementing a counter specified as formal operand [operands C and T (see timer functions)].

FR = Enabling a formal operand for cold restart [operands C and T (see timer functions)].
-p-. -. -- .. . - .- - -. -- ---p--- ~--.~- - .

RD = 1 Digital resetting of a formal operand [operands C and T].

6. Programming examples
6.2 Supplementary operations

6.2.12 Substitution functions

Processing functions

Program in function block (FB 35) 1 Function block call 1 Executed program

Operation / Description

STL
: I U FB 35

NAME: PROCS.
D 5 : D B 5
DW2 : DW2
D 6 : D B 6
DW 1 : DW1
Q 4 : QW4
F36 : FB 36

:BE

Process formal operand
Only
C DD
1U PB
1U FB
can be substituted.

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.1 General

7. Rules governing compability between
the LAD, CSF and STL methods
of representation

7.1 General
Each of the methods of representation in the STEP 5 programming
language has specific properties and limitations. Consequently, a
program block written in STL form cannot simply be output as an
LAD or CSF and the graphic methods of representation LAD and
CSF may not always be fully compatible. In other words, it is not
always possible to translate back from one form to the other.
If the program has been entered as a LAD or CSF, it can be always
translated back into STL form.

Fig. 22 Range and limitations of the methods of representation of the STEP 5
programming language.

Input Output

The aim of this section is to establish a number of rules, which, if
adhered to, will assure complete compatibility between the three
methods of representation.

These rules are classified as follows:

Rules for compatibility between the graphic methods of repre-
sentation.

If these rules are followed, input is possible in one graphic form and
output in the other form.

Fig. 23 Graphic input

Input Output

Rules for compatibility between statement lists and graphic me-
thods of representation.

If these rules are followed, it is possible to enter a program in any of
the methods of representation, graphic or otherwise, and have it
output in the other two forms. Fig. 24 Input in the form of a statement list

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.2 Rules governing compatibil'ty between the graphic methods

7.2 Rules governing compatibility between the graphic methods

7.2.1 Input in LAD, output in CSF (STL)
Rule: Do not exceed the display boundaries for CSF.
Excessive nesting can lead to the exceeding of the image boundaries (8 levels) in the CSF.

1
I-EING. 1 -EING. 2 -EING. 4 -EING. 6
+--- 1 [---+--- l [---+---l [---- +---] [- --+---------

I I I I
I-EING. 3 I I I
+---l C - - - + - - - - - - - - - + + +
I I I
I-EING. 5 I I

1 C - - - + + - - - - - - - . - - + +
I I
I-EING. 7 I
+-- -] + + --------- +

EING. 2 INPUT; AUSGANG e OUTPUT
I

-AUSGANG
+ + ()--I

I
I
I
I
I
I
I
I

a) LAD

-.E1 NG. 1 - - W ! & ! - -v-- -

-,E1 NG. 2 - - - ! l ! > = l !
! ! ! , ! - * - - W - -

-EIiG: 3 - - - ! ! - - - - - ! & !
! ! - - ! !

I -EING. 4---! . !>=l !
! ! ! !

-.EING. 5 ---- l I - - - - - 1 . e !
! ! ! !

- . E I N ~ ' : 6 --- I I I > L I I

! ! --- ! !
-EING. 7 I I -- -6USGANG

! ! .. --

b) CSF

Fig. 25 Example of maximum LAD nesting for output in CSF form

7.2.2 lnput in CSF, output in LAD (STL)

Rule 1 : Do not exceed the display boundaries for LAD.
Too many inputs on a CSF box cause the LAD display boundary to be exceeded.

a) CSF
I I
I-EING. 1 -EING. 2 -EING. 3 -EING. 4 -EING. 5 -EING. 6 -EING. 7 -AUSGAVG
+---l [---+---l [----+---l [---+---l [---+---l C---+---] [- - - + - - - l [- - - + - - - (,--I
I I

b) LAD

Fig. 26 Example of maximum AND box in CSF form for output as an LAD

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.2 Rules governing compatibility between the graphic methods
7.3 Rules governing compatibility between the STL and graphic methods

Rule 2: The output of a complex element (memory, comparator, timer and counter) must not be ORed.

Fig. 27 Only AND boxes are allowed in a CSF after a complex element

Rule 3: Connectors
6 Connectors are always permitted with OR boxes
6 Connectors are only permitted at the first input with AND boxes

X

X
put

Fig. 28 Examples showing when connectors are permitted with OR and AND boxes (#connectors permitted; X connectors not permitted).

Note:
Connectors are intermediate flags that are used to reduce the number of recurrent operations

7.3 Rules governing compatibility between the STL and graphic methods

Rule 1 : AND operation
Scanning the signal state and ANDing with the result of the previous logic operation

LAD: Contact in series LAD: AI-=--

CSF: Input of an AND box CSF: -

STL: Statement A

STL: A . . .

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

SIL: LAD: CSF:

I
-EING. 11 I-EING. 1 -EILNG. 2 -EING. 1 -----! & ! - - - W -

:U -EING. 2 + . + - - -] [- - -+ ----- -EING. 2 - - - ? 1 - m - - - !>=l ?
:O -EING. 3 1 I ! ! ? !
: 0 I-El'NG. 3 I -EIGGT 3 - - - , ! ?

\:U -EING. 41 +--- I E---.+ - . ---W---- t ----- ! !
:U -EING. 5 I I -Ej[N6. 4 -----! & ! ! !

I-EING. 4 -EING. 5 I -EING. 5 - - - ! I . -....--- I I --
++ ++---l C---+ ! . l ! ?

--v

I

I - - -v -

:' ' I-EING. 1 -EING. 2 -EING. 1 - - - ! 8 ! -----
):U -EING. 21 +---I C---++ ++----- -EING. 2 ---A 1 -.-.--W- ?>=l ?

:O -EING. 3 I I ! I ! !
: 0 I-EING. 3 I -E ~fiG: 3 ! !
:U -EING. 4 +----j C---+ -.------- - t

- - - - W

! !
1:U -EING. 5) I I -EING. 4 - - - ! 8 ! ! !

I-EING. 4 -EING. 5 I -EING. 5 ----! I . I 1 --
+--- 3 c---+--+ E----+ ! . ! ! --- l ---
I EING. C INPUT; AUSGANG 2 OUTPUT

Fig. 29 ANDing

Rule 2: OR operation
Scanning the signal state and operation after ORing with the result of the previous logic operation
LAD: Only one contact in a parallel branch
CSF: Input of an OR box
STL: Statement 0 . . . LAD:

CSF: -

STL: o . . .

STL: LAD: CSF:

I ----- :U I-EING. 1 -EING. 2 -EING. l - - - ! & !
-EING. 2 ----- -EING, 2 - - - ! I----- !>=l !

! ! ! !
-EING. 3 -EIGG, 3 ---+ !

:U -EING. 4 1 C
- - - -m

! !
:U -EING. 5 I I -E'ING. 4 - - - ! & ! ! !

I-EING. 4 -EING. 5 I -EING. 5 - - - ! I I I --
+---l C---+--- 1 E- - -+ ! ?

- -v
! ! ---

I

Fig. 30 ORing

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

Rule 3: AND before OR operation
ORing of AND functions

LAD: Several contacts in a parallel branch LAD:

CSF: Box before OR box

STL: Statement 0
A . . .
A . . .

STL: LAD:

J l

EING. 4

I

Fig. 31 AND before OR operation

CSF:

STL: A . . . 0
A . . . A

A

CSF:

EING. INPUT; AUSGANG a OUTPUT

Rule 4: Bracketing
This rule deals with the bracketing of complex binary operations, or complex elements with preceding and subsequent logic operations.

Preceding logic I operation 1-1 2 I
Subsequent logic

operation

Fig. 32 Bracketing

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

a) Complex binary logic
This class includes OR before AND operations, the rules for which are as follows:

AND operation before OR functions
LAD: Switch parallel contacts in series
CSF: OR box before AND box
STL: Statements

A(
OR
operation

1

LAD: CSF: STL:

A(
o . . .
o . . .
o . . .
1
A . . .

Fig. 33 OR before AND operation

The OR before AND operations are classed as a subset of the complex binary operations, whereby parallel contacts constitute the simplest com-
plex binary logic.

STL LAD CS F

Preceding operation

Complex

Subsequent operation

Subsequent

Preceding operation -n

U Subsequent operat~on

Fig. 34 Bracketing complex binary functions

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

b) Complex elements (memory, time, comparison or counter
functions).

The following rules must be adhered to for complex elements:

9 No brackets if there is no subsequent operation
9 Subsequent operation AND A(. . . .)
9 Subsequent operation OR (only for CSF, not permitted for LAD)

O(. . .)
0 A complex element must not have a preceding operation.

In addition, each unused input or output must be assigned an NOP 0
operation.
Exception: S, TW with timers and S, CW with counters must always

be defined together.

Complex

0 (
CSF 4 1

Subsequent
operation

When programming with the STL, the complex elements must be
programmed in the same order as they are assigned parameters on
the screen in graphic mode. Fig. 35 Bracketing complex elements

Exception: Times and counts. The relevant value must previously
have been stored in the accumulator with a load statement

STL: LAD: CSF:

fwf"" NOP 0 I ! DE! - I
I ! ! I
I ! ! -AUSGANG
I , R Q ! -- jf-+--- c 1 - - I
I ! ! I
I I
I
I Z 1 I
I - E I N G . 1 ------- I
+---l E - - - + - ! Z V ! I
I ! ! I
I - E I N G . 2 ! ! I
+---I c - - - + - I z R ! I
I ! ! I
I - E I N G . 3 ! ! I
+---] E - - - + - ! S ! I
I- EWZ -- !ZW D U L - I
I ! DE !-- I
I ! ! I
I ! ! -.AUSGANG
I - R Q ! - + { I - + - - - () - - I
I ! ----- !
T

I

EING. 2 INPUT; AUSGANG G OUTPUT

Fig. 36 Parameter assignment to unused inputs and outputs a) in the case of timers b) in the case of counters

Note: Only one complex function element is permitted per segment or rung.

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

The following examples show the four aforementioned cases in a complex binary operation in an STL and LAD (below) and as an STL and CSF
(opposite).

Example 1 : STL/LAD
Case 1 : AND (contacts in series)
Case 2: OR (onlx one contact in a parallel branch)
Case 3: AND before OR (several contacts in one parallel branch)
Case 4: OR before AND (bracketing)

STL LAD
tPA(...Q.. .)--l

I I I I
I-EING. 5 I-EING. 6 I I
+---l [---+---l c---+--------- + +
I I I
I-EING. 7 I I
+---l C-- -+ + + +
I I I

-EING. 7 I-EING. 8 -EING. 9 I I
+---l [---+---I C + + +

--EING. 4 I

EING. e INPUT; AUSGANG a OUTPUT

Case 2: -EING. 1 E" : I

Case 3: -EING. 2 -EING. 3 -EING. 8 -EING. 9

1 (-6 I

Case 4:

.. .
I-EING. 5 I
+--- 3 c----

-..

Fig. 37 Example l : STL/LAD

I-EING. 1 -EING. 2 -EING. 3
3 [---+---l C---+--- l c---.--

I I I
I-EING. 5 I-EING. 6 I
+--- 3 C---+---] c---+--------- +
I I
I-EING. 7 I
+--- 3 c---+ ----v-.-.-- + ------- --+

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

Example 2: STLICSF
Case 1 : AND (input of an AND box)
Case 2: OR (input of an OR box)
Case 3: AND before OR (AND box before OR box)
Case 4: OR before AND (OR box before AND box)

STL CSF

EING. 1 ---I>:1' -----
EING. 5 - - - l l -

Case -E I NG.
-EING.

EING. 1 INPUT; AUSGANG a OUTPUT

l --- > = l -----

' ---" 0
E I N G 7 ---U ----- U-

Fig. 38 Example 2: STL/CSF

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility betwc.sn the STL and graphic methods

Rule 5: Connectors STL: LAD:

For reasons of clarity, the rules for connectors are given separately = F

for the LAD and CSF methods. A F

a) with LAD
*#+

A connector as intermediate memory notes the result of the logic
operation programmed before it in its own line.
The following rules apply: Fig. 39 The connector in the STL and LAD

Connector in series (with other contacts).
A connector is treated in this case as a normal contact.

Connector in a parallel branch. Within a parallel branch a connec-
tor is treated as a normal contact. In addition, the entire parallel
branch must be enclosed within brackets of the 0 type (. . .).

Aconnector must never stand immediately after the line (connec-
tor as first contact) or directly after the opening of a line (connec-
tor as first contact within a parallel branch).

STL:

A . . .
A . . .
A . . .
= F . . .
A F
A

LAD

.-+H#HHHk

STL.:

A . . .

A(
A . . .

O(
A . . .
= F . . .
A F . . .
1
1
A . . .

LAD:

Fig. 40 Connector rules for LAD a) Connector in series
b) Connector in parallel branch

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

b) with CSF STL: CSF:
A connector as intermediate memory notes the result of the entire = F . . . # F...--

binary operation before this connector. A F . . .
The following rules apply:

Fig. 41 The connector in STL and CSF

Connector at the first input of an AND or OR box.

The connector is not bracketed.

0 Connector not at the first input of an OR box.

The entire binary operation before the input is enclosed in
parentheses of the O(. . .) type.

0 Connector not at the first input of an AND box.

The entire binary operation before the input is enclosed in
parentheses of the A(. . . .) type.

Only permitted with CSF (cannot be represented graphically with
LAD).

STL:
= F . . .
AF . . .
A . . .
A . . .

CSF:

STL: CSF:

o . . .

O(Prec.
Preceding - # F ..

oper.
operation

= F . . .
AF . . .
1

STL:
CSF:

A . . .

A(Prec.
Preceding oper. - # F .

operation

= F . . .
A F . . .
)

Fig. 42 Connector rules for CSF

7. Rules governing compatibility between the LAD, CSF and STL
methods of representation

7.3 Rules governing compatibility between the STL and graphic methods

Connector examples:

STL: CSF:

:U -E ING. 1 - - -. -
:U -E ING. 2 - -E ING. 1 - - - ! & !
:U -MERKER 1 - E I N G . 2 - - - ! !
: U (-MERKER 1 --- ! I

:U -E ING. 3 ! !
:U -E ING. 4 -E ING. 3 - - - ! & ! ! !
:U -MERKER 2 -E ING. 4 - - . - ! ! f !
: 0 --MERKER ? ! - ---- Q,. 1 1 ! !

:U -E ING. 5 ! I ! I ! !

:U -HERKER 3 - - - - ... ! ! ' !
: 1 -EXNG. 5 - - - l & ! ! ! I ?

:U -MERKER 4 -MERKER l 1 -.----l I - -. I !
. . - -AUSGANG ! ! -. - ! ! ! I

-MERKER 4 - - - ! I-- -AUSGANG
! I ... - -

I LAD: I
I - - E I N G . 1 -E ING. 2 --MERKER 1 -E ING. 3 - E I N F . 4 -MERKER 2 -MERKER 4 -AWSGANG
-kW-- 7 C-- -+ - - - -j C +--- l C k - .] E - - - + - - -] C .+---l [+-- - l C + () - . - I
I 1 I I
I I - - E I N G . 5 -MERKER 3 I I
I + 3 [t - - -] C.--+ - . - - - . - - - - - W + I
I I

Fig. 43 Example l : without connectors EING. & INPUT; AUSGANG A OUTPUT; MERKER a FLAG

STL:
: L1
:U . - . -
:U

-+,: LJ (
: U
: L1 . - . -
: I J

-E ING. 2
CSF:

-MERKER 1 - -- . . -. .-
-EING. 1 - . - - ! & ! - -. -- - -

-E ING. 3 -E ING. 2 1 1---#-MERKER I----! & !

- E I N G . 4 - - ! ! ... -- ..- ! !

-EIN.G. 3 ---- ! & ! I !
Con. 2 - -EING. 4 - - - - ! ! -.-#---MERKER 2 - - - ! > - l ! ! !

I 1 I ! ! I -. -. -
! ! !

! # - MERKER 4

-MERKER 3 ! ! - -. ! ! -AUSlriANG
:BE

J LAD: I

I -EJNG. 1 -E ING. 2 -MERKER 1 - E I N G . 3 - E I N G . 4 -MERKER 2 -MERKER 4 -AUSGANG

t - - - l [+----J [---l C---+ 3 [- -.-.W(#) (#) ----+--- (1 - - I +'" 1--- T :BE

I
I -EING. 5 -MERKER 3 T.
I 3 + (g) +
J O(f ?, I

Fig. 44 Example 2: with connectors

Connector 1 : Result of logic operation of Al 1 and AI 2
Connector 2: Result of logic operation of AI 3 and AI 4
Connector 3: Result of logic operation of AI 5
Connector 4: Result of the entire binary operation

8. Notes on estimating the required memory space

8. Notes on estimating the required
memory space

The S5-110s programmable controller permits a maximum user
memory configuration of 24.5 K words. Regardless of the memories
plugged in, the CPU has an internal user memory of 0.5 K words.

The memoryspace required for a program can be roughly estimated
as follows:

Statements in program blocks:
A B(PB-MQW)-8xz(l+MQ)+12

(X drives +): sequence cascades)

Statements in function blocks:

B BFB-MQW = (number of FB) X 150

Data words:

C ZDW = 2 X Zdrives + Bsteps (sequence cascade) + 10 X

Z messages + 256 (for listing)

Statements in organization block:

8 x Z (I + Q)
D B OB-QW:

150

Required memory space = A + B + C + D

9. Total overview of STEP 5 operations

9.1 Basic operations
9.1 .l Binary logic operations

-

Function
Cycle Operation code

Operation

AND loaic

Parameter

Scan
input for "l"

9.1.1 Binary logic operations

Scan
output for "l"

2

C 0 8 0
Q 1 0.0 to 127.7') / 6.9 1 1100 OXXX IXXX XXXX 1 2 1 1;2

Bit
addr.

1;2

Scan
flag for "l"

Byte
addr.

7.1 1 1000 O X X X ~ X X X X XXXX 1 2 1 1;2

0 0
OXXX XXXX

E 0 1 0
7.4 l 11 10 OXXX OXXX xexx 1 2

C 0
1100 ' OXXX A I

Scan
input for "0"

Scan
output for "0"

0.0 to 127.7'1

o f

1010 OXXX xxxx xxxx

6.9

Scan
flag for "0"

OR loaic

C
l I 0 0 1,XXI oexx xexx 1 2

Scan
input for"1"

1100 C IXXX 8 1 8 lXXX xexx 1 2
Scan
output for "l"

8 8 1 0
1000 IXXX XXXX xexx l 2

Scan
flag for "l"

Scan
input for " 0

Scan
output for "0"

Scan
flag for "0" 1010 A lXXX 8 1 0 XXXX xexx 2

Word
address AND logic

Scan
timer for "1" 7.4

Scan
timer for "0" 7.7 i1

7.7 1011 1000 xxxx xxxx

F 8
11 11 1000

Scan
counter for contents > 0

0 0
xxxx xxxx

B 0
1011 1 l ~ 0 0 I x e x x XXXX

Scan counter for
contents = 0

OR logic
I-

0 0
XXXX xxxx

0 0
xxxx XXXX

Scan timer
for "0"

2

xxxx XXXX 2

Scan counter
for contents > 0

Scan counter
for contents = 0

1) The input and output bytes (words) 64-127 (64-126) and the peripheral bytes (words) 64-127 (64-126) can be used as additional flag bits, bytes and words, as
the maximum peripheral configuration cannot exceed 64 inputloutput bytes.

2) RLO L status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 C C 0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 C C 0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9. Total overview of STEP 5 operations
9.1 Basic operations

9.1 . l Binary logic operations
9.1.2 Settinghesetting operations

9.1.3 Timer and counter operations
I Cond~t~on codesz) r

Operat~on code
Operat~on
P-

- -
ANDIOR loaic

ORing 1 1;2 1 of bracketed expressions

ANDing 1 1;2 1 of bracketed expressions

Right parenthesis
1 ; 2 l

Byte 1 address 9.1.2 Settinghesetting operations

l 0.0 to 127.7' 8.0 l cl o?i ob 1 : 1 : set input "l''

Set output to "l"
Q 0.0 to 127.7') 8.0 1101 OXXX 1XXX XXXX

0 1 O
0

1001 OXXX XXXX XXXX 1 1 Set flag to r T ~ , r

1

F 0
l111 0;xxI 0:xx XXXX 1 1 Set input to "0"

1

F 0 1 ~ 0
1111 OXXX 1XXX XXXX 1 1 Set output to r , ~ 3

1

0 l l,", l o x l X XXXX 1 1 Set flag to ,,o,,
1 1 " .".!

1101 lxxx IXXX XXXX

Set input to "1" conditionally
2

1 1 Set output to "l" conditionally
1 l

0
- F 0.0 to 255.7 1 6.8 1 1:Ol 11~XXl X:XX XXXX 1 1 Set flag to "1" conditionally

1

9.1.3 Timer and counter operations
Word I address /

0 0 Start timer as pulse
T 1 to127 1 18.7 1 0; l 0:OO 1 XXXX XXXX 1 1 1 2 1

0 Start timer as extended pulse
T 1 to 127 1 7 . 9 1 OdOl l ~ 0 l x ~ X X XXXX 1 1 1 2 1

0 Start timer as OFF delay
T 1 to 127 1 7 . 9 1 OdOl O A O I X ~ X XXXX 1 1 1 2 1

T

T

0 Reset timer
T 1 to 127 1 10.4 1 0:ll l lc00 I XXXX XXXX 1 1 1 2 1

1 to 127

1 to 127

0 Count up
C 1 to 127 1 17.0 I 0 8 0 1 k O l &X ,X I 1 I 2 1

S C

R C

0 Count down
C 1 to 127 1 17.0 1 0:01 0:OO 2 X X XXXX I 1 1 2 1

18.1

18.1

1)he input and output bytks (words) 64-1 27 (64-1 26) and the peripheral bytes (words) 64-1 27 (64-126) can be used as additional flag bits, bytes and words, as
the maximum peripheral configuration cannot exceed 64 inputloutput bytes.

2) RLO 2 status; FIB = 0 means current logic operation; FIB = l meansfirst operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

1 to 127

1 to 127

2 4
0010 0100

2 C
0010 1100

19

10.4

0 0
XXXX XXXX

0 0
XXXX XXXX

5 C
0101 1100

7 C
0111 1100

1

1

0 0
XXXX XXXX

0 0
XXXX XXXX

2

2

Starter timer as ON delay

Start timer as stored ON delay

1

1

2

2

Set counter

Reset counter

9. Total overview of STEP 5 operations

9.1 Basic operation
9.1.4 Loading and transfer functions

l Operation code
Operation Byte 0 I Byte 1 I ;ALD / Function

9.1.4 Loading and transfer functions

0 Load input byte of process
I B 0 to 127" l 7.4 l OtOO 1,401 OXXX X 1 - l - 1 input image into accu 1

0 Load input word of process
IW 1 Ot0126') l 9.3 l 0:Ol O i O l OXXX X W l - l - l input irnaae into accu 1

4 0 Load output byte of process
QB 0 to 127" XXXX l - 1 - l output image into accu l

Load output word of process
outwut imaae into accu l

0 Load flag byte into accu 1
FB 0 to 255 l 7.7 l 0 0 1 4 0 &X XXXX l - l - l

1 0 Load flag word into accu 1
FW l 0 to251 XXXX l - l - l

0 Load datum (right-hand byte) of
DR 1 to 255 l 12.1 l Of10 1 0 4 0 XeXX XXXX 1 - l - 1 current data block into accu 1

0 Load datum (left-hand byte) of
DL 1 l to255 l 13.2 Of10 Of10 XeXX XXXX l - l - I current data block into accu 1

3 0 Load datum (word) of current
DW 1 to 255 XXXX l - 1 - l actual data block into accu 1

0 Load time (binary) of l L T 1 to127 1 1 l 0 0 O f 1 0 X C X XXXX l - 1 - l timer into accu 1

Load counter (binary)
of counter into accu 1

L PB

L PW

4 B 1 0
I B 0 to 127" l 7.1 l 0100 101 1 OXXX XXXX O l -

l to 127
. . -. ---

l to 127

Transfer contents of accu 1 into input byte - I of wrocess inwut imaae

0 to 127"

0 to 126"

0 Transfer contents of accu 1 into input word
IW l Ot0126" 1 7.7 1 0:Ol O i l OXXX XXXX l - l - l of process input image

23.1

22.8

Transfer contents of accu 1 into output byte 1 - 1 of process output image

50

52

0 Transfer contents of accu 1 into output word
QW l Ot0126" I 7.7 1 0:OI 0 l l I XXXX l - 1 - l of process output image l

0 C
0000 1100

4 C
0100 1100

0 B 1 0
FB 0 to 255 l 7.1 l 0000 l 0 1 l XXXX X&X l -

7 2
01 11 0010

7 A
011 1 1010

Transfer contents of accu 1 into flag byte l - l

0 0
XXXX XXXX

0 0
XXXX XXXX

1 0 Transfer contents of accu 1 into flag byte
FW 0 to 254 XXXX l - - l

0 0
XXXX XXXX

0 0
XXXX XXXX

2 0 Transfer contents of accu 1 into the word
DR l to 255 XXXX 1 - l - (right-hand byte) of current actual data block l

-

-

0 Transfer contents of accu 1 into the word
DL 1 I to255 I I oio o i l k x ~ x x x x I - l - 1 (left-hand byte) of current data block

-

-

0 Transfer contents of accu 1 into the word
DW 1 to 255 l 13 l O i l X X X X XXXX l - 1 - l of current data block

-

-

0 Transfer contents of accu 1
PB l O to l27 ' l 1 53 l O A l O i l XXXX XXXX l - l - l directly into peripheral byte

-

-

Load time (BCD) of timer into accu 1

Load count (BCD) of counter into accu 1

7 0 Transfer contents of accu 1
PW 0 to 126" XXXX / - l - 1 directly into peripheral word

Load peripheral byte of digital inputs into accu 1,
bypassing the process image

Load peripheral word of digital inputs/outputs into
accu 1, bypassing the process image

2) RLO status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 C C 0 = 00 result or accu 1 = 0, CC1 C C 0 = 01 result or accu 1 less
than 0, CC1 C C 0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9. Total overview of the STEP 5 operations
9.1 Basic operations

9.1.4 Loading and transfer functions
9.1.5 Comparison functions

2 ASCII- 3 0 Load constant character into accu 1
KS * symbols 0000 l - l - l

Cycle
tlme (~ s)

0 to 255

3 0 4 0 Load constant number (hexadecimal code)
KH* Oto FFFF 1 6.6 1 0011 0000 1 0100 0000 1 - 1 - 1 . lnto accu 1

0000. . . 00 3 0 Load constant bit pattern of a word (2 bytes) l L KM* to111 . . . 11 0000 1 - 1 - 1 . into accu 1

5 0

Operat~on code

2
KT* 0.0 to 999.3 0010 1 - 1 -

Cond~t~on Codes')

~ r n S 6 5
~ u - o o o
- N M * L D

depkds oln 1 I M& Byte 0

2 8
0010 1000

0
K Y * ~ ~ ~ ~ 6 6 ~ 0 ~ 1 1 0 ~ 0 0 0 f 1 0 0000
p- -

number (2 bytes) as time

p-
--

Funct~on Byte 1

1 Load constant number (2 bytes)
KC* 0.0 to 999 l 6.6 1 0:Il O i O l O k O 0001 l - l - l as counter into accu 1

0 0
XXXX XXXX

-

* These are 4-byte operations. The constant is in byte 2 and in byte 3.

Load constant number (l byte)
- 1 - - 7- lnto accu 1

9.1.5 Comparison functions

-

0 Fixed-point comparison for accu 2 equal to accu 1.
1 0 . i ' 0 6 0 0 0 1 1 0 0 - 1 - 1 1;2;3;4 I If equal, RLO = "1".

Load constant number (2 bytes) lnto accu 1

0 Fixed-point comparison for accu 2 not equal to accu
1;2;3;4 1. If unequal, RLO = "l". l 10.7 l O&O OdOl Oh0 - l - 1 l

2 1 1 A 0 Fixed-point comparison for accu 2 2 accu 1
1;2;3;4 If accu 2 2 accu 1, RLO = "1". l 10.7 / 0010 0001 1010 - l - /

10.7

10.7

0 Fixed-point comparison for accu 2 5 accu 1.
1;2;3;4 If accu 2 5 accu 1, RLO = "1". 1 0 . 7 O i O O & / l ~ O - l - 1 1 1

Note:
The programmable controller has two accumulators for comparison and arithmetic functions and for digital operations.
Loading means that the contents of accu 1 are transferred to accu 2 and that accu 1 is newly loaded according to the operands in the load operation. After two load
operations, information on the contents of the accumulators can be obtained with comparison operations.

2
0010 0001

2
0010 0001

Example: L

! = F Scanning for accu 1 = accu 2

1 2 0
0010 -

1 4 0
0100 -

A transfer operation always transfers the contents of accu 1 to the operands specified in the transfer operation

2) RLO L status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

-

-

Fixed-point comparison for accu 2 > accu 1. If accu

Fixed-point comparison for accu 2 < accu 1.

Operation
--

9.1.6 Blocks calls

1 BEU

1 BEC

9. Total overview of STEP 5 operations
9.1 Basic operations

9.1.6 Block calls
9.1.7 Other commands

1 Cond~t~on Codesz' I

9.1.7 Other commands

Oto 47 1 25.6

Oto 47 l 26

address ,

0
xxxx XXXX ~ -

x&x 2 X X 1 - 1 2

lump unconditionally to function block
2 1

Jump unconditionally to program block

0
xxxx xxxx 1 0 1

0 0 Call data block; the data block is valid until another
xxxx xxxx I - I - I data block has been called.

lump conditionally to program block

1 . 2 1

0

0 0 End of block
0000 0000 1 - 1 2 1

0 1 Unconditional end of block - may be programmed
0000 0001 l - l 2 l several times within a block

1 2

0 0 Conditional end of block
0000 0000 I 1 I 1;2 I RLO = "1"

Jump cond~tionally to function block

0
0000 0:OO 7] - I No operation (all bits deleted)

Programmable stop operation (at the end of the
cycle, the programmable controller stops)

2) RLO A status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9. Total overview of STEP 5 operations
9.2 Supplementary operations

9.2.1 Binary logic functions

Cycle

time

9.2.1 Binary logic function

Operat~on

address U

Operation code

Byte 0 Byte 1

Word
address

4 6
0100 0110

0 0
xxxx xxxx

Parameter 1 (u s) 1 Byte 2

-

Test b ~ t of the data word for "1"

Condition codesz)

0 m 8 ~ 5
G i r 0 0 0
- l ~ I m I e I m

Byte 3 bDndson Alfetts [Funct~on .

7 0
0111 0000

C
1100 XXXX l

.-

Test bit of the counter word for "1" 1 5
0001 0101

0 0
xxxx xxxx

7 0
01 11 0000

C 0
1100 xxxx

Test bit of the data word for "0"

1;2

Test bit of the timer word for "1"

01 10
0

xxxx

0111 0000
8 0

1000 xxxx

7 0
0111 0000

8 0 l Test b ~ t of the counter word for"0"

0100
0

xxxx
--- pp

1
0001

0

5
0101

0
xxxx
-p

1000 XXXX XXXX

Test bit of the timer word for "0"

1 ;2 TBN T3) I
Set bit of data word unconditionally to "1" 7 0

01 11 0000
4 0

0100 xxxx

7 0
01 11 0000

4 0
0100 xxxx

7 0
0111 0000

4 0
0100 xxxx

0 0
xxxx xxxx

1 5
0001 0101

0 0
xxxx xxxx

Set bit of counter word unconditionally to "1"

2 5
0010 0101

0 0
xxxx xxxx

Set bit of timer word unconditionally to "1"

21,o

2, RLO status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

3, These are 4-byte-operations.

4 6
0100 0110

0 0
XXXX XXXX 22.5 -

21.0

7 0
0111 0000

0 0
0000 XXXX

7 0
0111 0000

0 0
0000 XXXX

2

7 0
0111 0000

0 0
0000 XXXX

Set bit of data word unconditionally to "0"

1 5
0001 0101

0 0
XXXX XXXX

2 5
0010 0101

0 0
XXXX XXXX

-

-

2

Set bit of counter word unconditionally to "0"

2

Set bit of timer word unconditionally to "0"

9. Total overview of STEP 5 commands
9.2 Supplementary operations

9.2.2 Digital logic functions
9.2.3 Arithmetic functions

9.2.4 lump functions
9.2.5 Timer and counter functions

9.2.2 Digital logic functions

D~gltal ANDlng of accu 1 and accu 2(wordforword),
result stored In accu 1,

P p

Dlgltal ORlng of accu 1 and accu 2 (word for word),

9.2.3 Arithmetic functions

5
0101 0001

Add accu 1 to accu 2, result stored in accu 1;
3;4;5 l

1 0 0
-

9.2.4 lump functions

"Label"
(4 ASCII-symbols)

"Label"
(4 ASCll symbols)

3,4,5

Wordaddress
f 127

-

Subtract accu 1 from accu 2, result stored In accu 1,

lump uncond~ttonally to label, conslstlng of 4 ASCll
symbols lump dlsplacement r k 127 words

0 0
xxxx xxxx

3,4

lump conditionally (if RLO = "l") to label,
consisting of 4 ASCll symbols.
lump displacement S 2 127 words.

Dlgltal EXORlng of accu 1 and accu 2 (word for
word), result stored ~n accu 1,
-p P

0 0
xxxx xxxx

0 0
xxxx xxxx

lump conditionally (if result > zero) to label,
consisting of 4 ASCll symbols.
lump displacement r f 127 words.
p-

lump conditionally (if result < zero) to label,
consisting of 4ASCII symbols.
lump displacement S + 127 words.

"Label"
(4 ASCII-symbols)

0 0
xxxx xxxx

"Label"
(4 ASCII-symbols)

"Label"
(4 ASCll symbols)

lump condltlonally (~ f result = zero) to label,
conslstlng of 4 ASCll symbols
lump dlsplacement 5 f 127 words

- P

0 0
xxxx xxxx

0 0
xxxx xxxx

"Label"
(4 ASCII-symbols)

lump condltlonally (~ f result 9 zero) to label,
conslstlng of 4 ASCll symbols
lump dlsplacement r f 127 words

- -

0 0
xxxx xxxx

lump conditionally (if condition code OVR = 1) to
label, consisting of 4ASCll symbols.
lump displacement 5 f 127 words.

"Label"
(4 ASCII-symbols)

9.2.5 Timer and counter functions I Wordaddress I

1 X:XX X:XX 1 ~ :E;E;~;m;)for cold restart (only on posltlve-golng
0 to 127 1 FRT

Enable counter for cold restart (only on posltlve-
2 golng edge of RLO)

pp

2) RLO L? status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

9. Total overview of STEP 5 commands
9.2 Supplementary operations

9.2.6 Shift functions
9.2.7 Conversion functions

9.2.8 Decrementinglincrementing
9.2.9 Process function

9.2.10 Disablelenable command output
9.2.1 1 Disablelenable interrupts

P-
-- - ---

i C o n d l t l o n l

Operat~on code
Operat~on

9.2.6 Shift functions 1 Par. 1

0 0
0000 xxxx

Shift contents of accu 1 to the left.
The bit positions t o the right which become vacant
are padded with zeros.

0 0
0000 xxxx

Shift contents of accu 1 to the right.
The bit positions to the left which become vacant
are padded with zeros.

9.2.7 Conversion functions

0 0 One's complement of accu 1 l - , 4.7 1 0:o OdOI 1 - 1 - 1 - 1
0 Two's complement of accu 1; 1 8.2 0 0 1 0 1 - 1 3;4 1 1 csw

9.2.8 Decrementinglincrementing

1 0 Decrement only the low byte
1 to 255 XXXX 1 - 1 - 1 of accu 1 by a particularvalue

1 to 255 1 4.4 1 OdOl OdOl l X A X X A X l - 1 - Increment Only the low byte
of accu 1 by a particular value.

9.2.9 Process functions 1 Wordaddress

Process flag word The next operat~on spec~f~ed IS

comb~ned w ~ t h the paramter In the flag word and l 4 l O

0
0100 1110 xxxx xxxx

Process data word The next operation spec~f~ed IS

comblned w ~ t h the parameter In the data word and

9.2.10 Disablelenable command output

p

p

Disable command output

Enable command output

9.2.11 Disablelenable interrupts

RA

-

l n h ~ b ~ t Interrupt processing

Enable interrupt processing

2) RLO 2 status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result or accu 1 less
than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.

4) These are four byte statements; the operation code is in byte 2, the parameters of the Statement to be executed are in byte 3.

9. Total overview of STEP 5 commands
9.2 Supplementary operations

9.2.12 Substitution functions

Cycle Operation code
tlnr 1 Byte 0 I Byte 1

6.2.12 Substitution functions

Operation

Parameter
address (hex) ANDIOR logic functions

I I l

Parameter

Formal operand

Formal operand

0 0
OOXX xxxx

(11s)

AND function; scan formal operand for"1"

1 Depends on I AHects Funct~on

0 0
OOXX xxxx

AND function; scan formal operand for"0"

Formal operand 0 - (4ASCII characters) 1:11 1 OtXX XXXX
OR function; scan formal operand for "1"

2 i 1 2 i
Formal operand X i 2 F 0 0

= (4ASCI characters) +14.Z5) 0010 11 11 1 OOXX XXXX 2 1;2
OR function; scan formal operand forr'O"

Set (binary) formal operand to "1"
S =

=

RB =

Set formal operand (restricted to "1")

Set (binary) formal operand to "0"

Formal operand
(4 ASCll characters)

Formal operand
(4 ASCll characters)

Formal operand
(4 ASCll characters)

-

Formal operand 0 Set (d~gltal) formal operand to "0"
OOXX XXXX operands T and C]

X+14 Z5)

X+14 Z5)

X+14 Z5)

Load and transfer functions

Formal operand 4 6
+15.55) 0100 01 10

1 7
0001 01 11

1 F
0001 11 11

3 7
001 1 01 11

0 0
OOXX xxxx

0 0
OOXX XXXX

0 0
OOXX XXXX

P

0 0
OOXX XXXX

Load formal operand.
Thevalueof the operand specified as formal operand
is loaded into accu 1 [operands IB, IW, FB, FW, QB,
QW, DR, DL, DW, PB, PW].

Formal operand
(4 ASCll characters)

0 0
OOXX xxxx

Load formal operand In BCD code
The value of the timer or counter locat~on speclfled
as formal operand IS loaded Into accu 1 [operands
T, C l

I-oad the b ~ t pattern of a formal operand Into accu 1
[operands KB, KS, KF, KH, KM, KY, KT, KC]

0 0
OOXX xxxx

0 0
ooxx xxxx

Formal operand
(4 ASCll characters)

Transfer to a formal operand
Thecontentsof accu 1 aretransferred totheoperand
spec~fled as formal operand [operands IB, IW, FB,
FW, QB, QW, DR, DL, DW, PB, PW]

Formal operand
(4 ASCll characters)

2, RLO &status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result oraccu 1 = 0, CC1 CC0 = 01 result oraccu 1 less
' than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.
5 , X signifies the cycle time of the command to be substituted.

Total overview of STEP 5 commands
9.2 Supplementary operations

9.2.12 Substitution funcfions

Formal operand 6

pp

Operation

0 0 Start timer specified as formal operand with the
OOXX XXXX I 1 1 2 1 value stored as pulse

[operand T].

Cycle
time
(PS)

-

Parameter

Parameter
address (hex)
p-.

SEC

Timerlcounter functions

Formal operand 1 E
(4 ASCII characters) X+6.75) 0001 11 10

I I I

Start timer specified as formal operand with the
value stored as extended pulse or set counter speci-
fied as formal operand with the count specified
[operands C, T].

Operation code

Formal operand
(4 ASCll characters)

Byte 0

SFD p

Function
-- p

Byte 1

Condition codes2'
O m S G F
d K O o O
- I w I m l * I m

Formal operand
(4 ASCll characters)

Depends on

ssu p

p

Affects

Formal operand
(4 ASCll characters)

0 0
OOXX XXXX

0 0
OOXX XXXX

Start timer specified as formal operand with the
value stored as "on" delay [operand T].

Start timer specified as formal operand with the
value stored as stored "off" delay or decrement
counter specified as formal operand [operands C,
Tl.

0 0
OOXX XXXX

Start timer specified as formal operand with the
value loaded as stored "on" delay or increment
counter specified as formal operand [operands C,
Tl.

Formal operand l 1 ° 6 0 0 Enable formal operand for cold restart
(4ASCll characters) X+6.85) 0000 0110 l OOXX XXXX l 1 2 1 [operands C, T].

2, RLO &status; FIB = 0 means current logic operation; FIB = 1 means first operation scan; CC1 CC0 = 00 result or accu 1 = 0, CC1 CC0 = 01 result oraccu 1 less
' than 0, CC1 CC0 = 10 result or accu 1 greater than 0; OVR (overflow) = 1 means in the case of arithmetic statements that the value is too large for the accu.
5, X signifies the cycle time of the command to be substituted.

~ p Process~ng function

=

Formal operand
(4 ASCll characters) X+8 55)

7 6
01 11 01 10

0 0
OOXX XXXX - -

Process formal operand
Only C DB, 1 U PB, and I U FB can be substituted

-

SIEMENS AKTIENGESELLSCHAFT Order No. GWA 807 2122-02
Printed in West Germany

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

